CSCI 136
Data Structures &
Advanced Programming

Lecture 19
Fall 2017
Instructor: Bills
Last Time:

- Ordered Structures
- Trees
 - Structure, Terminology, Examples
Today

- Trees
 - Implementation
 - Recursion/Induction on Trees
 - Applications
 - Traversals
Introducing Binary Trees

- Degree of each node at most 2
- Recursive nature of tree
 - Empty
 - Root with left and right subtrees
- SLL: Recursive nature was captured by hidden node (Node<E>) class
- Binary Tree: No “inner” node class; single BinaryTree class does it all
- Not part of Structure hierarchy!
Expression Trees

Build using constructor

\[
\text{new BinaryTree<E>(value, leftSubTree, rightSubTree)}
\]

BinaryTree<String> fourTimesTwo = new BinaryTree<String>("*", new BinaryTree<String>("4"), new BinaryTree<String>("2");

BinaryTree<String> fourTimesTwoPlusThree = new BinaryTree<String>("+", fourTimesTwo, new BinaryTree<String>("3");
Expression Trees

• **General strategy**
 - Make a binary tree (BT) for each leaf node
 - Move from bottom to top, creating BTs
 - Eventually reach the root
 - Call “evaluate” on final BT

• **Example**
 - How do we make a binary expression tree for
 $(((4+3)*(10-5))/2)$
 - Postfix notation: $4\ 3\ +\ 10\ 5\ -\ *\ 2\ /$
int evaluate(BinaryTree<String> expr) {

 if (expr.height() == 0)
 return Integer.parseInt(expr.value());

 else {
 int left = evaluate(expr.left());
 int right = evaluate(expr.right());
 String op = expr.value();
 switch (op) {
 case "+": return left + right;
 case "-": return left - right;
 case ":": return left * right;
 case ":": return left / right;
 }
 Assert.fail("Bad op");
 return -1;
 }
}
Full vs. Complete (non-standard!)

- **Full tree** – A full binary tree of height h has leaves only on level h, and each internal node has exactly 2 children.

- **Complete tree** – A complete binary tree of height h is full to height $h-1$ and has all leaves at level h in leftmost locations.

All full trees are complete, but not all complete trees are full!
Implementing BinaryTree

- **BinaryTree<E> class**
 - Instance variables
 - BinaryTree: parent, left, right
 - E: value
 - left and right are never null
 - If no child, they point to an “empty” tree
 - Empty tree T has value null, parent null, left = right = T
 - Only empty tree nodes have null value
Implementing BinaryTree

- BinaryTree class
 - Instance variables
 - BT parent, BT left, BT right, E value

```
null
    "*"
left | right

parent
    "4"
left | right
  EMPTY | EMPTY

parent
    "2"
left | right
  EMPTY | EMPTY | EMPTY
```
A small tree

EMPTY != null!
Implementing BinaryTree

- Many (!) methods: See BinaryTree javadoc page
- All “left” methods have equivalent “right” methods
 - `public BinaryTree()`
 - // generates an empty node (EMPTY)
 - // parent and value are null, left=right=this
 - `public BinaryTree(E value)`
 - // generates a tree with a non-null value and two empty (EMPTY) subtrees
 - `public BinaryTree(E value, BinaryTree<E> left, BinaryTree<E> right)`
 - // returns a tree with a non-null value and two subtrees
 - `public void setLeft(BinaryTree<E> newLeft)`
 - // sets left subtree to newLeft
 - // re-parents newLeft by calling newLeft.setParent(this)
 - `protected void setParent(BinaryTree<E> newParent)`
 - // sets parent subtree to newParent
 - // called from setLeft and setRight to keep all “links” consistent
Implementing BinaryTree

• Methods:
 • public BinaryTree<E> left()
 • // returns left subtree
 • public BinaryTree<E> parent()
 • // post: returns reference to parent node, or null
 • public boolean isLeftChild()
 • // returns true if this is a left child of parent
 • public E value()
 • // returns value associated with this node
 • public void setValue(E value)
 • // sets the value associated with this node
 • public int size()
 • // returns number of (non-empty) nodes in tree
 • public int height()
 • // returns height of tree rooted at this node
 • But where’s “remove” or “add”?!?!
BT Questions/Proofs

• Prove
 • The number of nodes at depth n is at most 2^n.
 • The number of nodes in tree of height n is at most $2^{(n+1)} - 1$.
 • A tree with n nodes has exactly $n-1$ edges
 • The size() method works correctly
BT Questions/Proofs

Prove: Number of nodes at depth $d \geq 0$ is at most 2^d.

Idea: Induction on depth d of nodes of tree

Base case: $d = 0$: 1 node. $1 = 2^0 \checkmark$

Induction Hyp.: For some $d \geq 0$, there are at most 2^d nodes at depth d.

Induction Step: Consider depth $d+1$. It has at most 2 nodes for every node at depth d.

Therefore it has at most $2 \times 2^d = 2^{d+1}$ nodes \checkmark
Prove that any tree of $n \geq 1$ nodes has $n-1$ edges

Idea: Induction on number of nodes

Base case: $n = 1$. There are no edges ✓

Induction Hyp: Assume that, for some $n \geq 1$, every tree of n nodes has exactly $n-1$ edges.

Induction Step: Let T have $n+1$ nodes. Show it has exactly n edges.

• Remove a leaf v (and its single edge) from T
• Now T has n nodes, so it has $n-1$ edges
• Now add v (and its single edge) back, giving $n+1$ nodes and n edges.
Alternate Proof: Strong Induction

Induction Hyp.: For some $n \geq 1$, every tree T with $k \leq n$ nodes has exactly $k-1$ edges.

Induction Step: Let T have $n+1$ nodes

- Let $n(T) = \# \text{ of nodes of } T$ and $e(T) = \# \text{ of edges of } T$
- Remove the root node r of T along with its 2 edges
- This leaves the two subtrees T_L and T_R of T
- T_L and T_R each have at most n nodes
- So $n(T_L) = 1 + e(T_L)$ and So $n(T_R) = 1 + e(T_R)$
- Now add r (and its 2 edges) back
 - Then $n(T) = 1 + n(T_L) + n(T_R)$ and $e(T) = 2 + e(T_L) + e(T_R)$
 - But $n(T_L) + n(T_R) = 1 + e(T_L) + 1 + e(T_R) = e(T) \checkmark$

Special case: One of T_L or T_R is empty. What changes?
Prove that BinaryTree method size() is correct.

- Let n be the number of nodes in the tree T
- Alert: Strong Induction Ahead...

Base case: n = 0. T is empty --- size() returns 0 ✓

Induction Hyp: Assume size() is correct for all trees having at most n nodes.

Induction Step: Assume T has n+1 nodes

- Then left/right subtrees each have at most n nodes
- So size() returns correct value for each subtree
- And the size of T is 1 + size of left subtree + size of right subtree ✓