Lecture 28: Recursion

```
def fact(n):
    if n == 0:
        return 1
        else:
            return n * fact(n-1)
```


$$
\operatorname{fact}(4)=4^{*} \rightarrow \operatorname{fact}(3)=3^{*} 2
$$

$$
\text { fact }(4)=4^{*} 6
$$

Write a recursive version of exponentiation called $\exp (\mathrm{n}, \mathrm{k})$ that computes n^{k}. Note that exponentiation is repeated multiplication.

```
>>> exp(2,0)
1
>>> exp(2,1)
2
>>> exp(2,2)
4
>>> exp(2,3)
8
>>> exp(2,10)
1024
```

Write a recursive version of production called prod(L) that computes the product of the numbers in the list L .

```
>>> prod(list(range(1,5)))
24
>>> prod(list(range(1,6)))
120
>>> prod(list(range(1,7)))
720
```

Write a recursive version of reverse called $\operatorname{rev}(L)$ that returns the members of L in reverse order.

```
>>> rev(list(range(10)))
[9, 8, 7, 6, 5, 4, 3, 2, 1, 0]
>>> rev([1])
[1]
>>> rev([])
[]
```

