
Lecture 25: Iterators and Generators



Iterators - Review

Recall that something is iterable if it supports the iter function—that is the method
iter is defined—and returns an iterator.

An iterator is an object that:

supports the next() function—that is, the method next () is defined;

throws a StopIteration when the iterator is empty; and

returns itself under an iter() call.

Iterators may be defined using classes or with generators.



An Iterator for Squares

1 class SquaresIter:
2
3 def init (self, threshold=None):
4 self. state = 1
5 self. threshold = threshold
6
7 def below threshold(self):
8 return self. threshold is None or self. state∗∗2 < self. threshold
9

10 def iter (self):
11 return self
12
13 def next (self):
14 if self. below threshold():
15 sq = self. state∗∗2
16 self. state += 1
17 return sq
18 else:
19 raise StopIteration()



An Iterator for Even Squares

1 class EvenSquaresIter(SquaresIter):
2
3 def next (self):
4 sq = super(). next ()
5 while (sq % 2 != 0):
6 sq = super(). next ()
7 return sq



Separating Iterables from Iterators

It is possible (and common) to exhaust an iterator’s data:

>>> si = SquaresIter(10)

>>> si

<SquaresIter object at 0x7f2ae6fd9278>

>>> list(si)

[1, 4, 9]

>>> list(si)

[]

By nature, next () moves an object’s internal state in one direction: forward.



Separating Iterables from Iterators

We may want to define iterable classes that are not iterators themselves.

1 class Squares:
2 def init (self, threshold=None):
3 self. threshold = threshold
4
5 def iter (self):
6 return SquaresIter(self. threshold)

>>> sq = Squares(10)

>>> sq

<Squares object at 0x7fb529e3c2b0>

>>> list(sq)

[1, 4, 9]

>>> list(sq)

[1, 4, 9]



Separating Iterables from Iterators

We may want to define iterable classes that are not iterators themselves.

1 class Squares:
2 def init (self, threshold=None):
3 self. threshold = threshold
4
5 def iter (self):
6 return SquaresIter(self. threshold)

>>> sq = Squares(10)

>>> sq

<Squares object at 0x7fb529e3c2b0>

>>> list(sq)

[1, 4, 9]

>>> list(sq)

[1, 4, 9]



Separating Iterables from Iterators

We have modified our functions to print each time they are executed in order to see
what is happening internally:

>>> sq = Squares(10)

Squares: __init__()

>>> list(si)

Squares: __iter__()

SquaresIter: __init__()

SquaresIter: __next__()

SquaresIter: __next__()

SquaresIter: __next__()

SquaresIter: __next__()

SquaresIter: raise StopIteration()

[1, 4, 9]

An individual iterator may exhaust its data, but the Squares object just create a new
one when iter() is called.



Separating Iterables from Iterators

We have modified our functions to print each time they are executed in order to see
what is happening internally:

>>> sq = Squares(10)

Squares: __init__()

>>> list(si)

Squares: __iter__()

SquaresIter: __init__()

SquaresIter: __next__()

SquaresIter: __next__()

SquaresIter: __next__()

SquaresIter: __next__()

SquaresIter: raise StopIteration()

[1, 4, 9]

An individual iterator may exhaust its data, but the Squares object just create a new
one when iter() is called.



A Generator for Squares

Instead of the return keyword, generators use yield

1 def squares gen(threshold=None):
2 i = 1
3 while threshold is None or i∗∗2 < threshold:
4 yield i∗∗2
5 i += 1

A yield statements passes control back to the calling function, but it preserves the
local state of the function



A Generator for Squares

A generator function returns an object that behaves just like an iterator.

>>> sg = squares_gen(10)

>>> sg

<generator object squares_gen at 0x7f16396dbd58>

>>> next(sg)

1

>>> next(sg)

4

>>> next(sg)

9

>>> next(sg)

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

StopIteration

>>>

>>> sg = squares_gen(10)

>>> sg

>>> list(sg)

[1, 4, 9]

>>> list(sg)

[]



Class Exercise: Powers of k

Define an iterator for powers of k with an optional second argument length argument
specifying how many of the first k powers to generate.

1 class PowersOfK:
2
3 def init (self, k, length=None):
4 self. k = k
5 self. pow = 0
6 self. length = length
7
8 def below threshold(self):
9 return self. length is None or self. pow < self. length

10
11 def iter (self):
12 return self
13
14 def next (self):
15 if self. below threshold():
16 v = self. k∗∗self. pow
17 self. pow += 1
18 return v
19 else:
20 raise StopIteration()



Class Exercise: Powers of k

Define an iterator for powers of k with an optional second argument length argument
specifying how many of the first k powers to generate.

1 class PowersOfK:
2
3 def init (self, k, length=None):
4 self. k = k
5 self. pow = 0
6 self. length = length
7
8 def below threshold(self):
9 return self. length is None or self. pow < self. length

10
11 def iter (self):
12 return self
13
14 def next (self):
15 if self. below threshold():
16 v = self. k∗∗self. pow
17 self. pow += 1
18 return v
19 else:
20 raise StopIteration()



Class Exercise: Powers of k

Define a generator function for powers of k with an optional second argument length

argument specifying how many of the first k powers to generate.

1 def powers of k(k, length=None):
2 ”””
3 generator for powers of k
4 Args:
5 k (int): base that we exponentiate
6 length (int): how many of the first k powers to generate
7 ”””
8 i = 0
9 while length is None or i < length:

10 yield k∗∗i
11 i += 1



Class Exercise: Powers of k

Define a generator function for powers of k with an optional second argument length

argument specifying how many of the first k powers to generate.

1 def powers of k(k, length=None):
2 ”””
3 generator for powers of k
4 Args:
5 k (int): base that we exponentiate
6 length (int): how many of the first k powers to generate
7 ”””
8 i = 0
9 while length is None or i < length:

10 yield k∗∗i
11 i += 1


