Lecture 24: Exceptions and lterators



Python alerts us of an extraordinary event by throwing an Exception

>>> 1 = list(range(10))

>>> 1[10]

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

IndexError: list index out of range

@ An IndexError is a type of exception
o All exceptions are classes that inherit from the BaseException class



We can separate our code’s normal control flow from error handling using try and
except:

| = list(range(10))
try:
I[10]
except IndexError as ie:
print(" Caught an IndexError: {} —— moving on” .format(ie))

~NOoO O~ WN R

print(1[0])

produces:

Caught an IndexError: list index out of range -- moving on
0



But only catch what you can handle by catching the most specific exception class(es)

def int_fraction(num, denom):
try:
return num // denom
except Exception as e:
print(" Can't divide by zero —— returning 0”)
return 0

~NOoO O~ WN -

@ This code catches and handles a ZeroDivisionError properly

@ But other exception classes also inherit from Exception



But only catch what you can handle by catching the most specific exception class(es)

1 | def int_fraction(num, denom):

2 try:

3 return num // denom

4 except Exception as e:

5 print(" Can't divide by zero —— returning 0”)
6 return 0

7

@ This code catches and handles a ZeroDivisionError properly

@ But other exception classes also inherit from Exception

>>> int_fraction(3, ’a’):
Can’t divide by zero -- retuning 0O
0

We mistakenly handle a TypeError as if it were a ZeroDivisionError



To throw an exception, raise the name of a class that is derived from BaseException

def __next__(self):
if self._has_more_items():
return self. _next_item()
else:
raise Stoplteration()

DDA WN

o lterators depend on exeptions to indicate they are out of items



Iterators

Recall that something is iterable if it supports the iter function—that is the method
__iter__ is defined—and returns an iterator. An iterator is something that

@ supports the next function—that is, the method __next__ is defined;
o throws a StopIteration when the iterator is empty; and
@ returns itself under an iter call.

Iterators may be defined using classes (this lecture) or with generators (next lecture).



An lterator for Squares

1 | class Squares:
2
3 def __init__(self, threshold=None):
4 self. _state = 1
5 self._threshold = threshold
6
7 def _below_threshold(self):
8 return self._threshold is None or self._statexx2 < self._threshold
9
10 def __iter__(self):
11 return self
12
13 def __next__(self):
14 if self._below_threshold():
15 sq = self._statex*2
16 self._state +=1
17 return sq
18 else:
19 raise Stoplteration()




An lterator for Even Squares

class EvenSquares(Squares):

def __next__(self):
sq = super().__next__()
while (sq % 2 1= 0):
sq = super().__next__()
return sq

~NOoO O~ WN -




