
Lecture 15: Treemaps

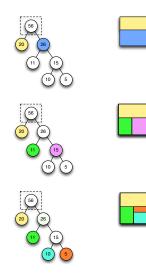
≡ • ク へ (~

・ロン ・四 と ・ ヨ と ・ ヨ と …

Stock Market Viz

Mouse over tiles to see detailed info. Click on tiles to see current price (NYSE)

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○


Algorithm 1 BuildTreeMap(*data*)

Require: A list of *n* data items. For simplicity, we assume each item is a weight, but it might be a more complex object in reality.

▲ロ → ▲ 個 → ▲ 目 → ▲ 目 → ● ● ● ● ● ●

 $T \leftarrow$ a list of *n* trees ($T = T_1 \dots T_n$) Sort *T* from highest weight to lowest weight while |T| > 1 do $Z_1 \leftarrow$ the last tree in *T* $Z_2 \leftarrow$ the second-to-last tree in *T* $Z \leftarrow$ Tree(weight(Z_1) + weight(Z_2), Z_1 , Z_2) Replace Z_1 and Z_2 with *Z* in *T*. Sort *T* form highest weight to lowest weight end while return The final tree in *T*

From Trees to Treemaps

leaf If the t is a leaf, then return the the list containing r; and non-leaf if t is not a leaf, then

- split r into two smaller rectangles r₁ and r₂ along the axis given by o using weight proportional to the left and right subtrees respectively;
- recursively find the partition of r₁ by making a recursive call on the left subtree, passing r₁ and the opposite orientation of o;
- recursively find the partition of r₂ by making a recursive call on the right subtree, passing r₂ and the opposite orientation of o;
- Interpretation of these two partitions.