
Lecture 7: Practice with Strings



Predicting operations on s

What does s equal after the following operations?

>>> s = "the rain in spain stays mainly on the plain"

>>> s[3]

>>> s[:3]

>>> s[4:]

>>> s[4:8]

>>> s[7:3:-1]

>>> s[::-1]



Predicting operations on s

>>> s = "the rain in spain stays mainly on the plain"

>>> s[3]

’ ’

>>> s[:3]

’the’

>>> s[4:]

’rain in spain stays mainly on the plain’

>>> s[4:8]

’rain’

>>> s[7:3:-1]

’niar’

>>> s[::-1]

’nialp eht no ylniam syats niaps ni niar eht’



Practice with String Methods

split and join Write a function totab that given a comma delimited
string like "name,yob,age,weight" returns a tab
delimited string like "name\tyob\tage\tweight".

upper and lower Write a function called capitalize that given a string
returns the same string but with the first character
capitalized and the remaining characters in lowercase. For
example, capitalize(’pURPle’) returns ’Purple’

find Write a function called begins that given a string s and a
prefix pre returns True if and only if s begins with pre.

find and len Write a function called ends that given a string s and a
suffix suf returns True if and only if s ends with suf



capitalize

def capitalize(s):
”””return a capitalized version of s”””
return (s[0].upper + s[1:].lower())



totab

def totab(s):
”””replace the commas in s with tabs”””
return ”\t”.join(s.split(”,”))



begins

def begins(s, pre):
”””returns True if and only if s begins with pre”””
return s.find(pre) == 0



ends

def ends(s, suf):
”””returns True if and only if s ends with suf”””
loc = len(s)−len(suf)
return s.find(suf, loc) == loc



double and substring

? A string is called a double string when it is composed of two words
repeated twice. Examples of double strings include pizzapizza and
heyhey. Write a function called double(s) that return True if and
only if s is a double string.

? Given a string t of length n, a subsequence s of length m ≤ n of t is
a string that appears in t when characters of t may be dropped. For
example ada is a subsequence of madman because dropping both ms
and the n from madman yields ada. Write a function called
subsequence(s,sub) that returns True if and only if sub is a
subsequence of s.



double and substring

def double(s,):
”””returns True if and only if s is a double string”””
n = len(s)
return (n % 2 == 0) and (s[0:n//2] == s[n//2:n])

def subsequence(s,sub):
’’’returns True if and only if sub is a subsequence of s’’’
start = 0
for c in sub:

index = s.find(c, start)
if index == −1:

return False
start = index + 1

return True


