
Williams College Lecture 30 Brent Heeringa, Bill Jannen

Sorting

Sorting is to computing what the Empire State Building is to New York City—an iconic, inimitable problem that is
ubiquitous in the field. So many problems become easier after sorting that it’s usually the first and simplest strategy
to try when encountering a new problem. For example, given a list of n numbers, you can find the median number
using around n operations. Showing this is true is non-trivial. But imagine you sorted the numbers first. Now finding
the median is as easy as picking grabbing the number occurring in the middle of the list. In most cases, sorting the
numbers take more than n operations, but not much more. Here we will consider a general purpose sorting routine
called MERGESORT that is recursive and has applications to sorting big data.

MERGESORT

Let’s keep it simple: suppose you have a list of numbers L and you want to sort them in ascending order. Thinking
inductively, imagine that you could solve the sorting problem on smaller lists. In other words, if you divide L into
two lists L1 and L2 of size dL/2e and dL/2e respectively, then you can assume that L1 and L2 come back sorted.
What remains is to merge L1 and L2 into a sorted version of L. Because L1 and L2 are sorted, this is quite natural:
compare the first items in each list and insert the smaller into the new sorted list. Suppose the smaller item was in
L1. Now compare the second item of L1 with the first item in L2. Now suppose the first item of L2 is smaller. Add
it to the sorted list and continue the process until one of the lists is empty.

Here’s some Python code to perform the MERGE step.

1 def merge(L1, L2):
2
3 i1 = i2 = 0
4 L = []
5 while i1 < len(L1) and i2 < len(L2):
6 if L1[i1] < L2[i2]:
7 L.append(L1[i1])
8 i1 +=1
9 else:

10 L.append(L2[i2])
11 i2 += 1
12 if i1 == len(L1):
13 L.extend(L2[i2:])
14 else:
15 L.extend(L1[i1:])
16 return L

With MERGE in hand, writing MERGESORT amounts to a few small lines of code:

1 def mergesort(L):
2 if len(L) < 2:
3 return L
4 else:
5 mid = len(L) // 2
6 return merge(mergesort(L[0:mid]), mergesort(L[mid:]))

Efficiency of MERGESORT

The primary unit of work in classical sorting is the comparison. Counting comparisons allow us, with a slight bit of
irony, compare sorting algorithms. When we compare two elements, we establish their relative ordering. It’s easy

Fall Semester 2016 1 CS 135: Diving into the Deluge of Data



Williams College Lecture 30 Brent Heeringa, Bill Jannen

to see that we could always perform
(
n
2

)
≈ n2 comparisons to establish a total ordering. A natural question is, can

we do better? Let’s take a stab at counting the number of comparisons that MERGESORT performs in the worst case
starting with a list of n items.

Let T (n) be the largest number of comparisons performed by MERGESORT on a list of n numbers. Mathemati-
cally we have

T (n) =

{
2T (n/2) + n (n > 1)

1 (otherwise.)

Let’s get a sense of this by drawing a picture. Each node represents a call to MERGESORT and shows the number
of comparisons performed. Each level of the recursion has n total comparisons. There are log n levels. So the total
number of comparisons is n log n.

Fall Semester 2016 2 CS 135: Diving into the Deluge of Data



Williams College Lecture 30 Brent Heeringa, Bill Jannen

Here is an algorithm called INSERTIONSORT that works as follows: it considers the element at position i under
the invariant that the list from positions 0 to i − 1 are already sorted. It then inserts the element at position i in the
correct spot by moving backward and swapping elements. Here is the Python code.

1 def insertionsort(L):
2 for i in range(len(L)):
3 for j in range(i−1,−1,−1):
4 if L[j+1] < L[j]:
5 L[j], L[j+1] = L[j+1], L[j]
6 else:
7 break
8 return L

Below are two plots that show the running time (y axis) of MERGESORT (green) and INSERTIONSORT (blue)
on random data of size 100 ≤ n ≤ 1000 and 100 ≤ 10000 by 100 (x-axis).

Fall Semester 2016 3 CS 135: Diving into the Deluge of Data



Williams College Lecture 30 Brent Heeringa, Bill Jannen

Adding reverse and key options

The builtin Python sorting routine accepts two optional arguments: key and reverse. The key is a function
applied to the data before it’s compared. The reverse option signals that the data should be sorted in non-
increasing, rather than non-decreasing, order.

To implement the key option in merge, we just add a new argument key and apply the function before the
comparisons.

1 def merge(L1, L2, key):
2
3 i1 = i2 = 0
4 L = []
5 while i1 < len(L1) and i2 < len(L2):
6 if key(L1[i1]) < key(L2[i2]):
7 L.append(L1[i1])
8 i1 +=1
9 else:

10 L.append(L2[i2])
11 i2 += 1
12 if i1 == len(L1):
13 L.extend(L2[i2:])
14 else:
15 L.extend(L1[i1:])
16 return L

To implement reversewe isolate our recursive procedure in a helper function and reverse the results if desired.

1 def mergesort(L, key=None, reverse=False):
2
3 if key is None:
4 key = lambda x: x
5
6 def helper(L):
7 if len(L) < 2:
8 return L
9 else:

10 mid = len(L) // 2
11 return merge(helper(L[0:mid]), helper(L[mid:]), key)
12
13 L = helper(L)
14 if reverse:
15 L.reverse()
16 return L

Fall Semester 2016 4 CS 135: Diving into the Deluge of Data


