
CS134 Lecture 34:

Wrap Up

Announcements & Logistics
• Lab 10 due Wed/Thus at 10 pm

• CS134 Scheduled Final: Friday, May 17, 9:30 AM

• Room: TCL 123 (Wege)

• Reduced distraction room: Bio 112

• CS134 Review Session before Finals:

• Wednesday May 15, 4.30-5.30 pm

• Room: TCL 123 (Wege)

• We will release Practice Final soon

Do You Have Any Questions?

Last Time: Sorting
• Discussed efficiency of selection and merge sort

• You implemented and compared wall-clock time in Lab 10

• Takeaways:

• Efficiency matters!

• Big Oh is a good predictor of wall clock time

Today and Friday
• Today we will wrap up the topics of CS134 (first 30 mins):

• Overview of what we learned

• Concepts vs programming language: discuss high level differences
between Python vs Java

• How to do more CS stuff beyond this class

• Last 15 or so mins: course evaluations

• Friday's plan:

• Jeopardy style review session of concepts!!

• Form teams of 5-6 students, come up w team names

• Split up topics between teammates to maximize chance of winning

CS134 in a Nutshell
• We have covered many topics this semester!

• We started out learning the basics of Python and programming in general

• Pre-midterm

• Types & Operators (int, float, %, //, /, arithmetic operators, etc)

• Functions (variable scope, return vs print, defining vs calling functions)

• Conditionals (if elif else and logical operators)

• Iteration: for loops, while loops, nested loops, accumulation variables in loops

• Sequences: strings, lists, ranges, lists of lists

• Mutability and aliasing

• Data structures: lists, tuples and sets

CS134 in a Nutshell
• Then we moved on to more advanced CS topics

• Post-midterm

• New data structure: dictionaries

• File reading: with … as, processing file lines in a loop

• Recursion: recursive methods and classes

• Graphical recursion with turtle graphics

• Classes, Objects, and OOP

• attributes, special methods, getters, setters, inheritance

• “Bigger” OOP Examples: Autocomplete, Tic Tac Toe, Boggle

• Special methods and associated operators/functions

• Advanced topics:

• Efficiency (Big-O), Linked Lists, Searching and sorting

Takeaway: What is Computer Science?
• Computer science computer programming!

• Computer science is the study of what computers [can]

do; programming is the practice of making computers do useful things

• Programming is a big part of computer science, but there is much

more to CS than just writing programs!

• Another part of CS is computational thinking

≠

https://www.edsurge.com/news/2015-12-02-computer-science-goes-beyond-coding

Take away: Computational Thinking
• Computational thinking allows us to develop solutions for complex problems. We

present these solutions such that a computer, a human, or both, can understand.

• Four pillars of CT:

• Decomposition - break down a complex problem into smaller parts

• Pattern recognition – look for similarities among and within problems

• Abstraction – focus on important information only, ignore irrelevant details

• Algorithms - develop a step-by-step solution to the problem

• A computer can performs billion of operations per second, but computers only do
exactly what you tell them to do!

• In this course we will learn learned how to 1) use CT to develop algorithms for
solving problems, and 2) implement our algorithms through computer programs

CS134 Labs: Practice with Computational Thinking
• Labs were designed to look at real life commonplace processes

through a computational lens

Universal Skills and Toolkit
• Gained many skills that go beyond CS134/Python

• Navigating around your computer via Terminal

• Using git for collaboration

• Ability to utilize existing libraries for plotting/ data visualization

• Practice on testing and debugging

• Skills that is useful irrespective of programming language

CS Concepts Carry Over
• We used Python as a tool to practice fundamentals of CS

• Decomposition, Pattern recognition, Abstraction and Algorithms

• Programming language just gives us a way to express our logic

• If the language changes, this expression changes

• But the algorithm (the logical steps) stay the same!

Many Programming Languages
• Many programming languages out there

• What is the most popular ones change over time

Adapting from One to Another
• Adapting to a new language is a matter of getting familiar with its syntax

as well as practicing being "fluent" in it

• Let's discuss this through high level comparison of Python vs Java

Python vs. Java

• Powerful language used by
many programmers

• Designed for making common
programming tasks simple

• Good for new programmers,
and for scientific computing

• Interpreted (line by line
execution), allows for
interactivity 

• Dynamically typed: Run-time
error when variables are used
incorrectly

Python Java
• Powerful language used by

many programmers

• Designed for building large-

scale systems design

• Good fit for large, scalable

reliable software projects

• Compiled: must be

compiled before execution,
does not support
interactivity

• Statically typed: compile-
time error when variables
are used incorrectly

Python vs Java: Hello World
• Python has low overhead to get started

• Java has more overhead upfront

• Needed to ensure declaring classes and types from get-go

Hello.java

public class Hello {

 public static void main(String args[]) {

 System.out.println("Hello,
World!");

 }

}

hello.py  

print("Hello, World!")

we can call the function print
without needing to define a class

Every Java program must define a class, and all
code is inside a class. All functions in Java are

methods and must be called using dot notation

Python vs Java: Running Our Code
• Python is an interpreted language: interpreter runs through the code line by line

and executes each line: this can also be done interactively!

• Java is a compiled language: code must be compiled first (converted to machine

code) before it is executed

Hello.java

public class Hello {

 public static void main(String args[]) {

 System.out.println("Hello,
World!");

 }

}

hello.py  

print("Hello, World!")

% python3 hello-simple.py

Hello, World!

% javac Hello.java

% java Hello

Hello, World!

% python3

>>> print("Hello World!")

Hello World!

Python vs Java: Data Types
• Both Python and Java have data types (Ints, Floats, Booleans, Char/String etc)

• Python is flexible about its type:

• Loosey goosey (technical term: loosely typed) language

• Makes it easy to get started, less cumbersome / overhead

• Can lead to unexpected runtime errors, tries to "overcorrect" type issues
whenever possible leading to unexpected behavior 

• Java is a strongly-typed language: variables types need to be declared at
initialization and cannot be changed

• Makes the code more verbose /more overhead

• But will catch most of these errors during compilation!

Downside of Loose Types
• Python tries to fix "type mismatches" by doing bizarre things at times

• Does this look familiar?

word1 = ["hello"]

word2 = "world"

word1 += word2 # calls.append secretly

print(word1)

['hello', 'w', 'o', 'r', 'l', 'd']

Beyond CS134
• For those interested in continuing on the CS path:

• Take CS 136 or MATH 200

• If you want to practice Java over break: redo CS134 labs in Java

• In general, if you enjoy puzzles and programming, you can practice
these skills on your own:

• Project Euler (Math + CS puzzles)

• LeetCode (Coding Interview Prep, Python/Java examples)

• MIT course: The Missing Semester of Your CS Education

• CS courses as non-majors: can still take CS136, Math 200, winter
study courses (Video games, Lida's winter study, etc)

https://projecteuler.net/
https://leetcode.com/

Takeaways
• CS is all about breaking down a complex problem into smaller pieces

and figuring out how to put the solution back together

• This problem-solving mindset is a very useful skill to have!

• You all should be proud of how much you’ve learned!

• Thank you for your patience and enthusiasm throughout the course

WE MADE IT!

Course Evals Logistics
• Two parts: (1) SCS form, (2) Blue sheets (both online)

• Your feedback helps us improve the course and shape the CS curriculum

• Your responses are confidential and we only receive anonymized
comments after we submit our grades

• We appreciate your constructive feedback

• SCS forms are used for evaluation, blue sheets are open-ended

comments directed only to your instructor

To access the online evaluations, log into Glow (glow.williams.edu) using your
regular Williams username and password (the same ones you use for your
Williams email account). On your Glow dashboard you’ll see a course called
“Course Evaluations.” Click on this and then follow the instructions you
see on the screen. If you have trouble finding the evaluation, you can ask a

neighbor for help or reach out to ir@williams.edu.

