CSI34 Lecture 33: Sorting Wrap Up and Java

Announcements & Logistics

- HW I0 released, due tonight @ 10 pm
- Lab 8 graded feedback returned
- Lab 10 released
 - Handout will be posted soon: server issues
 - Very short lab on searching and sorting (today's lecture)
 - No prelab
 - Individual lab but can discuss strategies with lab mate
- CS134 Scheduled Final: Friday, May 17, 9:30 AM
 - Room: **TCL 123**

Do You Have Any Questions?

Last Time: Efficiency & Searching

- Discussed recursive code for binary search
- Discussed selection sort algorithm
 - get_min_index helper function: debug in Lab 10
- Analyzed selection sort
 - $O(n^2)$

This Week

- Today we will discuss an improved (optimal) sorting algorithm
 - Merge sort
- Example of recursion: a divide-and-conquer sorting algorithm
- Two more lectures:
 - Comparison of Python vs Java
 - OOP Wrap up and review

More Efficient Sorting: Merge Sort

Towards an $O(n \log n)$ Algorithm

- There are other sorting algorithms that compare and rearrange elements in different ways, but are still $O(n^2)$ steps
 - Any algorithm that takes n steps to move each item n positions (in the worst case) will take at least $O(n^2)$ steps
 - To do better than n^2 , we need to move an item in fewer than n steps
- We can sort in $O(n \log n)$ time if we are clever: Merge sort algorithm (Invented by John von Neumann in 1945)

Merge Sort: Basic Idea

- If we split the list in half, sorting the left and right half are smaller versions of the same problem
- Algorithm:
 - (Divide) Recursively sort left and right half
 - (Conquer) Merge the sorted halves into a single sorted list

Merge Sort Algorithm

- **Base case:** If list is empty or contains a single element: it is already sorted
- Recursive case:
 - Recursively sort left and right halves
 - Merge the sorted lists into a single list and return it
- Question:
 - Where is the **sorting** actually taking place?

```
def merge_sort(lst):
    """Given a list lst, returns
    a new list that is lst sorted
    in ascending order."""
    n = len(lst)
```

```
# base case
if n == 0 or n == 1:
    return lst
```

else: m = n//2 # middle

recurse on left & right half
sort_lt = merge_sort(lst[:m])
sort_rt = merge_sort(lst[m:])

return merged list
return merge(sort_lt, sort_rt)

Merge Sort Example

Merge Sort Example

• **Problem.** Given two sorted lists **a** and **b**, how quickly can we merge them into a single sorted list?

merged list c

- Yes, a[i] appended to c
- No, b[j] appended to c

- Yes, a[i] appended to c
- No, b[j] appended to c

- Yes, a[i] appended to c
- No, b[j] appended to c

- Yes, a[i] appended to c
- No, b[j] appended to c

- Yes, a[i] appended to c
- No, b[j] appended to c

- Yes, a[i] appended to c
- No, b[j] appended to c

- Walk through lists *a*, *b*, *c* maintaining current position of indices *i*, *j*, *k*
- Compare a[i] and b[j], whichever is smaller gets put in the spot of c[k]
- Merging two sorted lists into one is an O(n) step algorithm!
- Can use this merge procedure to design our recursive merge sort algorithm!

```
def merge(a, b):
    """Merges two sorted lists a and b,
    and returns new merged list c"""
    # initialize variables
    i, j = 0, 0
    len_a, len_b = len(a), len(b)
    c = []
    # traverse and populate new list
    while i < len_a and j < len_b:
        if a[i] <= b[j]:
            c.append(a[i])
            i += 1</pre>
```

```
else:
    c.append(b[j])
    i += 1
```

```
# handle remaining values
if i < len_a:
    c.extend(a[i:])</pre>
```

```
elif j < len_b:
    c.extend(b[j:])</pre>
```

```
return c
```

MERGE SÖRT

idea-instructions.com/merge-sort/ v1.2, CC by-nc-sa 4.0

Merge Sort Analysis: Basic Idea

- If you take CS256 (Algorithms), you will learn how to analyze the Big Oh complexity of such recursive algorithms
- We'll give an intuitive explanation for now:
 - # times can we divide the list in half until we hit the base case?
 - $\approx \log_2 n$
 - # steps to merge two lists each of size O(n)?
 - *O*(*n*)
 - Merge occurs at every recursive step, so overall $O(n \log n)$ steps

Runtime Comparisons: Big Oh

	Table 2.1 The running times (rounded up) of different algorithms on inputs of increasing size, for a processor performing a million high-level instructions per second. In cases where the running time exceeds 10 ²⁵ years, we simply record the algorithm as taking a very long time.						
	п	$n \log_2 n$	<i>n</i> ²	n ³	1.5 ⁿ	2 ⁿ	n!
n = 10	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	4 sec
n = 30	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	18 min	10 ²⁵ years
n = 50	< 1 sec	< 1 sec	< 1 sec	< 1 sec	11 min	36 years	very long
n = 100	< 1 sec	< 1 sec	< 1 sec	1 sec	12,892 years	10 ¹⁷ years	very long
<i>n</i> = 1,000	< 1 sec	< 1 sec	1 sec	18 min	very long	very long	very long
n = 10,000	< 1 sec	< 1 sec	2 min	12 days	very long	very long	very long
n = 100,000	< 1 sec	2 sec	3 hours	32 years	very long	very long	very long
<i>n</i> = 1,000,000	1 sec	20 sec	12 days	31,710 years	very long	very long	very long

Summary: Searching and Sorting

- We have seen algorithms that are
 - $O(\log n)$: binary search in a sorted list
 - O(n): linear searching in an unsorted list
 - $O(n \log n)$: merge sort
 - $O(n^2)$: selection sort
- Important to think about efficiency when writing code!

