CS134 Lecture 33: Sorting Wrap Up and Java
Announcements & Logistics

• **HW 10 released**, due tonight @ 10 pm
• Lab 8 graded feedback returned
• **Lab 10** released
 • Handout will be posted soon: server issues
 • Very short lab on searching and sorting (today's lecture)
 • No prelab
 • Individual lab but can discuss strategies with lab mate
• CS134 Scheduled Final: **Friday, May 17, 9:30 AM**
 • Room: **TCL 123**

Do You Have Any Questions?
Last Time: Efficiency & Searching

- Discussed recursive code for binary search
- Discussed selection sort algorithm
 - get_min_index helper function: debug in Lab 10
- Analyzed selection sort
 - $O(n^2)$
This Week

• Today we will discuss an improved (optimal) sorting algorithm

 • *Merge sort*

• Example of recursion: a divide-and-conquer sorting algorithm

• Two more lectures:

 • Comparison of Python vs Java

 • OOP Wrap up and review
More Efficient Sorting: Merge Sort
Towards an \(O(n \log n) \) Algorithm

- There are other sorting algorithms that compare and rearrange elements in different ways, but are still \(O(n^2) \) steps
 - Any algorithm that takes \(n \) steps to move each item \(n \) positions (in the worst case) will take at least \(O(n^2) \) steps
 - To do better than \(n^2 \), we need to move an item in fewer than \(n \) steps
- We can sort in \(O(n \log n) \) time if we are clever: **Merge sort algorithm**
 (Invented by John von Neumann in 1945)
Merge Sort: Basic Idea

- If we split the list in half, sorting the left and right half are smaller versions of the same problem.

- **Algorithm:**
 - *(Divide)* Recursively sort left and right half.
 - *(Conquer)* Merge the sorted halves into a single sorted list.

```python
m = n // 2
n = len(lst)
```
Merge Sort Algorithm

- **Base case:** If list is empty or contains a single element: it is already sorted

- **Recursive case:**
 - Recursively sort left and right halves
 - Merge the sorted lists into a single list and return it

- **Question:**
 - Where is the **sorting** actually taking place?

```python
def merge_sort(lst):
    """Given a list lst, returns a new list that is lst sorted in ascending order."""
    n = len(lst)

    # base case
    if n == 0 or n == 1:
        return lst

    else:
        m = n//2  # middle
        sort_lt = merge_sort(lst[:m])
        sort_rt = merge_sort(lst[m:]):
        return merge(sort_lt, sort_rt)
```
Merge Sort Example
Merging Sorted Lists

- **Problem.** Given two sorted lists \(a \) and \(b \), how quickly can we merge them into a single sorted list?
Is \(a[i] \leq b[j] \) ?

- Yes, \(a[i] \) appended to \(c \)
- No, \(b[j] \) appended to \(c \)
Merging Sorted Lists

Is $a[i] \leq b[j]$?

- Yes, $a[i]$ appended to c
- No, $b[j]$ appended to c

Diagram:

- List a: 2, 4, 9, 11, 12
- List b: 1, 3, 5, 7, 13, 14
- Merged list c: k

Arrows indicate the comparison and selection process.
Merging Sorted Lists

Is $a[i] \leq b[j]$?

- Yes, $a[i]$ appended to c
- No, $b[j]$ appended to c
Merging Sorted Lists

Is $a[i] \leq b[j]$?

- Yes, $a[i]$ appended to c
- No, $b[j]$ appended to c
Merging Sorted Lists

Is $a[i] \leq b[j]$?

- Yes, $a[i]$ appended to c
- No, $b[j]$ appended to c

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>4</td>
<td>9</td>
<td>11</td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>

\downarrow

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>5</td>
<td>7</td>
<td>13</td>
<td>14</td>
</tr>
</tbody>
</table>

\downarrow

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\downarrow

$\text{merged list } c$

<p>| | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\downarrow

k

- i
- j
- k
Merging Sorted Lists

Is $a[i] \leq b[j]$?

- Yes, $a[i]$ appended to c
- No, $b[j]$ appended to c

merged list c
Merging Sorted Lists

- Walk through lists a, b, c maintaining current position of indices i, j, k
- Compare $a[i]$ and $b[j]$, whichever is smaller gets put in the spot of $c[k]$
- Merging two sorted lists into one is an $O(n)$ step algorithm!
- Can use this merge procedure to design our recursive merge sort algorithm!

```python
def merge(a, b):
    """Merges two sorted lists a and b, and returns new merged list c""
    # initialize variables
    i, j = 0, 0
    len_a, len_b = len(a), len(b)
    c = []
    # traverse and populate new list
    while i < len_a and j < len_b:
        if a[i] <= b[j]:
            c.append(a[i])
            i += 1
        else:
            c.append(b[j])
            j += 1
    # handle remaining values
    if i < len_a:
        c.extend(a[i:]
    elif j < len_b:
        c.extend(b[j:]
    return c
```
If you take CS256 (Algorithms), you will learn how to analyze the Big Oh complexity of such recursive algorithms.

We'll give an intuitive explanation for now:

- # times can we divide the list in half until we hit the base case?
 - $\approx \log_2 n$
- # steps to merge two lists each of size $O(n)$?
 - $O(n)$
- Merge occurs at every recursive step, so overall $O(n \log n)$ steps
Runtime Comparisons: Big Oh

Table 2.1 The running times (rounded up) of different algorithms on inputs of increasing size, for a processor performing a million high-level instructions per second. In cases where the running time exceeds 10^{25} years, we simply record the algorithm as taking a very long time.

<table>
<thead>
<tr>
<th>n</th>
<th>n</th>
<th>$n \log_2 n$</th>
<th>n^2</th>
<th>n^3</th>
<th>1.5^n</th>
<th>2^n</th>
<th>$n!$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n = 10$</td>
<td>< 1 sec</td>
<td>4 sec</td>
</tr>
<tr>
<td>$n = 30$</td>
<td>< 1 sec</td>
<td>18 min</td>
<td>10^{25} years</td>
</tr>
<tr>
<td>$n = 50$</td>
<td>< 1 sec</td>
<td>< 1 sec</td>
<td>< 1 sec</td>
<td>< 1 sec</td>
<td>11 min</td>
<td>36 years</td>
<td>very long</td>
</tr>
<tr>
<td>$n = 100$</td>
<td>< 1 sec</td>
<td>< 1 sec</td>
<td>< 1 sec</td>
<td>1 sec</td>
<td>12,892 years</td>
<td>10^{17} years</td>
<td>very long</td>
</tr>
<tr>
<td>$n = 1,000$</td>
<td>< 1 sec</td>
<td>< 1 sec</td>
<td>1 sec</td>
<td>18 min</td>
<td>very long</td>
<td>very long</td>
<td>very long</td>
</tr>
<tr>
<td>$n = 10,000$</td>
<td>< 1 sec</td>
<td>< 1 sec</td>
<td>2 min</td>
<td>12 days</td>
<td>very long</td>
<td>very long</td>
<td>very long</td>
</tr>
<tr>
<td>$n = 100,000$</td>
<td>< 1 sec</td>
<td>2 sec</td>
<td>3 hours</td>
<td>32 years</td>
<td>very long</td>
<td>very long</td>
<td>very long</td>
</tr>
<tr>
<td>$n = 1,000,000$</td>
<td>1 sec</td>
<td>20 sec</td>
<td>12 days</td>
<td>31,710 years</td>
<td>very long</td>
<td>very long</td>
<td>very long</td>
</tr>
</tbody>
</table>
Summary: Searching and Sorting

- We have seen algorithms that are
 - $O(\log n)$: binary search in a sorted list
 - $O(n)$: linear searching in an unsorted list
 - $O(n \log n)$: merge sort
 - $O(n^2)$: selection sort
- Important to think about efficiency when writing code!