
CS134 Lecture 33:
Sorting Wrap Up and Java

Announcements & Logistics
• HW 10 released, due tonight @ 10 pm
• Lab 8 graded feedback returned
• Lab 10 released

• Handout will be posted soon: server issues
• Very short lab on searching and sorting (today's lecture)
• No prelab
• Individual lab but can discuss strategies with lab mate

• CS134 Scheduled Final: Friday, May 17, 9:30 AM

• Room: TCL 123

Do You Have Any Questions?

Last Time: Efficiency & Searching
• Discussed recursive code for binary search
• Discussed selection sort algorithm

• get_min_index helper function: debug in Lab 10
• Analyzed selection sort

• O(n2)

This Week
• Today we will discuss an improved (optimal) sorting algorithm

• Merge sort

• Example of recursion: a divide-and-conquer sorting algorithm

• Two more lectures:

• Comparison of Python vs Java

• OOP Wrap up and review

More Efficient Sorting:
Merge Sort

Towards an AlgorithmO(n log n)
• There are other sorting algorithms that compare and rearrange elements in

different ways, but are still steps

• Any algorithm that takes steps to move each item positions (in
the worst case) will take at least steps

• To do better than , we need to move an item in fewer than steps

• We can sort in time if we are clever : Merge sort algorithm
(Invented by John von Neumann in 1945)

O(n2)

n n
O(n2)

n2 n

O(n log n)

• If we split the list in half, sorting the left and right half are smaller
versions of the same problem

• Algorithm:

• (Divide) Recursively sort left and right half

• (Conquer) Merge the sorted halves into a single sorted list

Merge Sort: Basic Idea

lst
m = n//2

0 n = len(lst)

12 2 9 4 11 3 1 7 14 5 13

• Base case: If list is empty or
contains a single element: it is
already sorted

• Recursive case:
• Recursively sort left and

right halves
• Merge the sorted lists into a

single list and return it
• Question:

• Where is the sorting
actually taking place?

Merge Sort Algorithm
def merge_sort(lst):
 """Given a list lst, returns
 a new list that is lst sorted
 in ascending order."""
 n = len(lst)

 # base case
 if n == 0 or n == 1:
 return lst

 else:
 m = n//2 # middle

 # recurse on left & right half
 sort_lt = merge_sort(lst[:m])
 sort_rt = merge_sort(lst[m:])

 # return merged list
 return merge(sort_lt, sort_rt)

4 11 1 7 5 13

12 2 9 4 11 3 1 7 14 5 13

12 2 9 4 11 3 1 7 14 5 13

Merge Sort Example

12 2 9 4 11 3 1 7 14 5 13

12 2 9 4 11 3 1 7 14 5 13

31 14132 4 5 7 9 11 12

2 12 4 9 11 135 141 3 7

Merge Sort Example

114

4 11 1 7 5 13

1 13512 2 9 3 147

122 94 11 31 7 145 13

• Problem. Given two sorted lists a and b, how quickly can we merge
them into a single sorted list?

Merging Sorted Lists

merged list c

a

122 94 11

i

31 7 145 13

b

j

Is a[i] <= b[j] ?
• Yes, a[i] appended to c
• No, b[j] appended to c

Merging Sorted Lists

a

122 94 11

i

31 7 145 13

b

j

merged list ck

Merging Sorted Lists

a

122 94 11

i

31 7 145 13

b

j

merged list ck

1

Is a[i] <= b[j] ?
• Yes, a[i] appended to c
• No, b[j] appended to c

Merging Sorted Lists

a

122 94 11

i

31 7 145 13

b

j

merged list ck

1

Is a[i] <= b[j] ?
• Yes, a[i] appended to c
• No, b[j] appended to c

2

Merging Sorted Lists

a

122 94 11

i

31 7 145 13

b

j

merged list ck

1

Is a[i] <= b[j] ?
• Yes, a[i] appended to c
• No, b[j] appended to c

2

Merging Sorted Lists

a

122 94 11

i

31 7 145 13

b

j

merged list ck

1

Is a[i] <= b[j] ?
• Yes, a[i] appended to c
• No, b[j] appended to c

2 3

Merging Sorted Lists

a

122 94 11

i

31 7 145 13

b

j

merged list c k

1

Is a[i] <= b[j] ?
• Yes, a[i] appended to c
• No, b[j] appended to c

2 3 54 7 9 11 12 13 14

• Walk through lists
maintaining current position of
indices

• Compare and ,
whichever is smaller gets put in
the spot of

• Merging two sorted lists into
one is an step algorithm!

• Can use this merge procedure
to design our recursive merge
sort algorithm!

a, b, c

i, j, k

a[i] b[j]

c[k]

O(n)

Merging Sorted Lists
def merge(a, b):
 """Merges two sorted lists a and b,
 and returns new merged list c"""
 # initialize variables
 i, j = 0, 0
 len_a, len_b = len(a), len(b)
 c = []
 # traverse and populate new list
 while i < len_a and j < len_b:

 if a[i] <= b[j]:
 c.append(a[i])
 i += 1
 else:
 c.append(b[j])
 j += 1

 # handle remaining values
 if i < len_a:
 c.extend(a[i:])

 elif j < len_b:
 c.extend(b[j:])

 return c

• If you take CS256 (Algorithms), you will learn how to analyze the Big
Oh complexity of such recursive algorithms

• We'll give an intuitive explanation for now:

• # times can we divide the list in half until we hit the base case?

•

• # steps to merge two lists each of size ?

•

• Merge occurs at every recursive step, so overall steps

≈ log2 n

O(n)

O(n)

O(n log n)

Merge Sort Analysis: Basic Idea

Runtime Comparisons: Big Oh

Summary: Searching and Sorting
• We have seen algorithms that are

• : binary search in a sorted list

• : linear searching in an unsorted list

• : merge sort

• : selection sort
• Important to think about

efficiency when writing code!

O(log n)

O(n)

O(n log n)

O(n2)

O(1)

O(n)

O(n2)

O(log n)

O(n log n)

