
CS134 Lecture 32:  
Sorting 



Announcements & Logistics
• HW 10 will be released today, due Mon @ 10 pm

• Last HW on efficiency and Big Oh 

• Lab 8 graded feedback will be returned soon

• Lab 10 will be released today
• Very short lab on searching and sorting (today's lecture)
• No prelab
• Individual lab but can discuss strategies with lab mate

• CS134 Scheduled Final:  Friday,  May 17,  9:30 AM 

• Room:  TCL 123 

Do You Have Any Questions?



Last Time:  Efficiency & Searching
• Measured efficiency as number of steps taken by algorithm on worst-

case inputs of a given size
• Introduced Big-O notation: captures the rate at which the number of 

steps taken by the algorithm grows wrt size of input , "as  gets large"
• Compared array lists vs linked lists
• Compared linear vs binary search

n n



Today:  Searching and Sorting
• Review recursive implementation of binary search

• Discuss some classic sorting algorithms: 

• Selection sort 

• Merge sort



• The recursive search algorithm we described to search in a sorted 
array is called binary search 

• It can be much more efficient than a linear search 

• Takes   lookups if we can index into sequence efficiently

• Which data structure supports fast access/indexing?

• Accessing an item at index  in an array requires constant time

• Accessing an item at index  in a LinkedList can require traversing 
the whole list (even if it is sorted!):   linear time

• To get a more efficient search algorithm, it is not only important to use 
the right algorithm, we need to use the right data structure as well!

≈ log n
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Binary Search



• Base cases?  When are we done?

• If list is too small (or empty) to continue searching, return False

• If item we’re searching for is the middle element, return True

Binary Search

mid = n//2

Check middle



• Recursive case: 

• Recurse on left side if item is smaller than middle

• Recurse on right side if item is larger than middle

Binary Search

mid = n//2

If item < a_lst[mid], 
then need to search in 

a_lst[:mid]



• Recursive case: 

• Recurse on left side if item is smaller than middle

• Recurse on right side if item is larger than middle

Binary Search

mid = n//2

If item > a_lst[mid], 
then need to search in 
a_lst[mid+1:]



Technically, there is one 
small problem with our 

implementation.  List splicing 
is actually O(n)! 

def binary_search(seq, item): 
    """Assume seq is sorted. If item is  
    in seq, return True; else return False.""" 

    n = len(seq) 

    # base case 1 
    if n == 0: 
        return False 
     
    mid = n // 2 
    mid_elem = seq[mid] 

    # base case 2 
    if item == mid_elem: 
        return True 
     
    # recurse on left 
    elif item < mid_elem: 
        left = seq[:mid] 
        return binary_search(left, item) 
         
    # recurse on right 
    else: 
        right = seq[mid+1:] 
        return binary_search(right, item) 



Binary Search:   Improved

Passing start/end indices as 
arguments avoids the need 

to splice!

def binary_search_helper(seq, item, start, end): 
    '''Recursive helper function used in binary search'''  
         
    # base case 1 
    if start > end: 
        return False 
     
    mid = (start + end) // 2  
    mid_elem = seq[mid] 

    if item == mid_elem: 
        return True 
     
    # recurse on left 
    elif item < mid_elem: 
        return binary_search_helper(seq, item, start, mid-1) 
         
    # recurse on right 
    else: 
        return binary_search_helper(seq, item, mid+1, end) 

def binary_search_improved(seq, item): 

    return binary_search_helper(seq, item, 0, len(seq)-1) 





More on Big Oh



• Tells you how fast an algorithm is / the run-time of algorithms

• But not in seconds!

• Tells you how fast the algorithm grows in number of operations

Big-O Notation

O(log n)
"Big O" Number of Operations



Understanding Big-O
• Notation:   often denotes the number of elements (size)

• Constant time or :  when an operation does not depend on the 
number of elements, e.g.

• Addition/subtraction/multiplication of two values, or defining a 
variable etc are all constant time

• Linear time or :  when an operation requires time proportional 
to the number of elements, e.g.:

for item in seq:  
   <do something> 

• Quadratic time or :   nested loops are often quadratic, e.g.,
for i in range(n):
   for j in range(n):
        <do something>

n

O(1)

O(n)

O(n2)



• Notation:   often denotes the number of elements (size)
• Our goal:  understand efficiency of some algorithms at a high level 

n

Big-O:  Common Functions

O(1)

O(n)

O(n2)

O(log n)



Sorting



Sorting
• Problem: Given a sequence of unordered elements, we need to sort 

the elements in ascending order.

• There are many ways to solve this problem!

• Built-in sorting functions/methods in Python

• sorted(): function that returns a new sorted list

• sort():  list method that mutates and sorts the list

• Today:  how do we design our own sorting algorithm?

• Question:  What is the best (most efficient) way to sort  items?

• We will use Big-O to find out!

n



Selection Sort
• A possible approach to sorting elements in a list/array:  

• Find the smallest element and move (swap) it to the first position

• Repeat:  find the second-smallest element and move it to the 
second position, and so on

29 10 14 37 1 2



Selection Sort
• Find the smallest element and move (swap) it to the first position

• Repeat:  find the second-smallest element and move it to the second 
position, and so on

29 10 14 37 1 2



Selection Sort
• Find the smallest element and move (swap) it to the first position

• Repeat:  find the second-smallest element and move it to the second 
position, and so on

2910 14 37
21



Selection Sort
• Find the smallest element and move (swap) it to the first position

• Repeat:  find the second-smallest element and move it to the second 
position, and so on

2910 14 37
21



Selection Sort
• Find the smallest element and move (swap) it to the first position

• Repeat:  find the second-smallest element and move it to the second 
position, and so on

• The gold bars represent the sorted portion of the list.

29 1014 371 2



Selection Sort
• Find the smallest element and move (swap) it to the first position

• Repeat:  find the second-smallest element and move it to the second 
position, and so on

• The gold bars represent the sorted portion of the list.

29 1014 371 2



Selection Sort
• Find the smallest element and move (swap) it to the first position

• Repeat:  find the second-smallest element and move it to the second 
position, and so on

• The gold bars represent the sorted portion of the list.

29371 2
10 14



Selection Sort
• Find the smallest element and move (swap) it to the first position

• Repeat:  find the second-smallest element and move it to the second 
position, and so on

• The gold bars represent the sorted portion of the list.
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Selection Sort
• Find the smallest element and move (swap) it to the first position
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Selection Sort
• Find the smallest element and move (swap) it to the first position

• Repeat:  find the second-smallest element and move it to the second 
position, and so on
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Selection Sort
• Find the smallest element and move (swap) it to the first position

• Repeat:  find the second-smallest element and move it to the second 
position, and so on

• The gold bars represent the sorted portion of the list.
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Selection Sort
• Find the smallest element and move (swap) it to the first position

• Repeat:  find the second-smallest element and move it to the second 
position, and so on

• The gold bars represent the sorted portion of the list.

And now we're finally done!

29 371 2
10 14



Selection Sort
• Generalize: For each index  in the list lst, we need to find the min 

item in lst[i:] so we can replace lst[i] with that item

• In fact we need to find the position min_index of the item that is 
the minimum in lst[i:] 

• Reminder:  how to swap values of variables a and b?

• in-line swapping:  a, b = b, a

• How do we implement this algorithm?

i



Selection Sort

def selection_sort(my_lst): 
    """Selection sort of a given mutable sequence my_lst, 
    sorts my_lst by mutating it.  Uses selection sort.""" 

     
    # find size 
    n = len(my_lst) 
     
    # traverse through all elements 
    for i in range(n): 
         
        # find min element in the sublist from index i+1 to end 

        min_index = get_min_index(my_lst, i) 
                 
        # swap min element with current element at i 
        my_lst[i], my_lst[min_index] = my_lst[min_index], my_lst[i] 

You will work on this helper 
function in Lab 10



Selection Sort

def selection_sort(my_lst): 
    """Selection sort of a given mutable sequence my_lst, 
    sorts my_lst by mutating it.  Uses selection sort.""" 

     
    # find size 
    n = len(my_lst) 
     
    # traverse through all elements 
    for i in range(n): 
         
        # find min element in the sublist from index i+1 to end 

        min_index = get_min_index(my_lst, i) 
                 
        # swap min element with current element at i 
        my_lst[i], my_lst[min_index] = my_lst[min_index], my_lst[i] 

Even without an implementation, 
can we guess how many steps 

does this function need to take?



Selection Sort Analysis
• The helper function get_min_index must iterate through index i to 

n to find the min item 

• When i = 0 this is n steps 

• When i = 1 this is n-1 steps

• When i = 2 this is n-2 steps

• And so on, until i = n-1 this is 1 step

• Thus overall number of steps is sum of inner loop steps  

• What is this sum?  (You will see this in MATH 200 if you take it.)

(n − 1) + (n − 2) + ⋯ + 0 ≤ n + (n − 1) + (n − 2) + ⋯ + 1



Selection Sort Analysis:    Visual



Selection Sort Analysis:  Algebraic 

S = n + (n − 1) + (n − 2) + ⋯ + 2 + 1
S = 1 + 2 + ⋯ + (n − 2) + (n − 1) + n

2S = (n + 1) + (n + 1) + ⋯ + (n + 1) + (n + 1) + (n + 1)

+

2S = (n + 1) ⋅ n
S = (n + 1) ⋅ n ⋅ 1/2

• Total number of steps taken by selection sort is thus:
•    O(n(n + 1)/2) = O(n(n + 1)) = O(n2 + n) = O(n2)



How Fast Is Selection Sort?
• Selection sort takes approximately  steps!n2



More Efficient Sorting:
Merge Sort



Towards an  AlgorithmO(n log n)
• There are other sorting algorithms that compare and rearrange elements in 

different ways, but are still  steps

• Any algorithm that takes  steps to move each item  positions (in 
the worst case) will take at least  steps

• To do better than , we need to move an item in fewer than  steps 

• We can sort in  time if we are clever :  Merge sort algorithm 
(Invented by John von Neumann in 1945)

O(n2)

n n
O(n2)

n2 n

O(n log n)



• If we split the list in half, sorting the left and right half are smaller 
versions of the same problem

• Algorithm:    

• (Divide) Recursively sort left and right half ( )

• (Unite) Merge the sorted halves into a single sorted list ( )

O(log n)

O(n)

Merge Sort:  Basic Idea

lst
m = n//2

0 n = len(lst)

12 2 9 4 11 3 1 7 14 5 13



• Problem.  Given two sorted lists a and b, how quickly can we merge 
them into a single sorted list?

Merging Sorted Lists

merged list c

a

122 94 11

i

31 7 145 13

b

j



Is a[i] <= b[j] ?
• Yes, a[i] appended to c 
• No, b[j] appended to c

Merging Sorted Lists

a

122 94 11

i

31 7 145 13

b

j

merged list ck



Merging Sorted Lists

a

122 94 11

i

31 7 145 13

b

j

merged list ck

1

Is a[i] <= b[j] ?
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Merging Sorted Lists

a
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i

31 7 145 13

b

j

merged list ck
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Is a[i] <= b[j] ?
• Yes, a[i] appended to c 
• No, b[j] appended to c
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Merging Sorted Lists

a
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i

31 7 145 13
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merged list ck
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Is a[i] <= b[j] ?
• Yes, a[i] appended to c 
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Merging Sorted Lists

a

122 94 11

i

31 7 145 13

b

j

merged list ck

1

Is a[i] <= b[j] ?
• Yes, a[i] appended to c 
• No, b[j] appended to c

2 3



Merging Sorted Lists

a

122 94 11

i

31 7 145 13

b

j

merged list c k

1

Is a[i] <= b[j] ?
• Yes, a[i] appended to c 
• No, b[j] appended to c

2 3 54 7 9 11 12 13 14



• Walk through lists  
maintaining current position of 
indices 

• Compare  and , 
whichever is smaller gets put in 
the spot of 

• Merging two sorted lists into 
one is an  step algorithm!

• Can use this merge procedure 
to design our recursive merge 
sort algorithm!

a, b, c

i, j, k

a[i] b[ j]

c[k]

O(n)

Merging Sorted Lists
def merge(a, b): 
    """Merges two sorted lists a and b, 
    and returns new merged list c""" 
    # initialize variables 
    i, j, k = 0, 0, 0 
    len_a, len_b = len(a), len(b) 
    c = [] 
    # traverse and populate new list 
    while i < len_a and j < len_b: 
         
        if a[i] <= b[j]: 
            c.append(a[i])  
            i += 1 
        else: 
            c.append(b[j]) 
            j += 1 
         
    # handle remaining values 
    if i < len_a: 
        c.extend(a[i:]) 
         
    elif j < len_b: 
        c.extend(b[j:])  
     
    return c  



• Base case: If list is empty or 
contains a single element: it is 
already sorted 

• Recursive case: 
• Recursively sort left and 

right halves
• Merge the sorted lists into a 

single list and return it
• Question:  

• Where is the sorting 
actually taking place?

Merge Sort Algorithm
def merge_sort(lst): 
    """Given a list lst, returns 
    a new list that is lst sorted 
    in ascending order.""" 
    n = len(lst) 
     
    # base case 
    if n == 0 or n == 1: 
        return lst 
     
    else: 
        m = n//2 # middle 
         
        # recurse on left & right half 
        sort_lt = merge_sort(lst[:m]) 
        sort_rt = merge_sort(lst[m:]) 
         
        # return merged list 
        return merge(sort_lt, sort_rt) 



4 11 1 7 5 13

12 2 9 4 11 3 1 7 14 5 13

12 2 9 4 11 3 1 7 14 5 13

Merge Sort Example

12 2 9 4 11 3 1 7 14 5 13

12 2 9 4 11 3 1 7 14 5 13



31 14132 4 5 7 9 11 12

2 12 4 9 11 135 141 3 7

Merge Sort Example

114

4 11 1 7 5 13

1 13512 2 9 3 147

122 94 11 31 7 145 13





• If we split the list in half, sorting the left and right half are smaller 
versions of the same problem

• Algorithm Analysis Rough Idea:    

• (Divide) Recursively sort left and right half: happens  times

• (Unite) Merge the sorted halves into a single sorted list: takes  
times to merge two lists of  items

log n

O(n)
n

Merge Sort Analysis:  Basic Idea 

lst
m = n//2

0 n = len(lst)

12 2 9 4 11 3 1 7 14 5 13



Big Oh Comparisons
• Selection sort: 

• Merge sort: 

O(n2)

O(n log n)


