CSI134 Lecture 32;
Sorting

Announcements & Logistics

HW 10 will be released today, due Mon @ 10 pm

L ast

W on efficiency and Big Oh

- Lab 8 graded feedback will be returned soon

- Lab 10 will be released today

- Very short lab on searching and sorting (today's lecture)

+ No prelab

ndividual lab but can discuss strategies with lab mate

CS134 Scheduled Final: Friday, May 17, 9:30 AM
Room: TCL 123

Do You Have Any Questions?

Last [Ime: Efficiency & Searching

+ Measured efficiency as number of steps taken by algorithm on worst-
case Inputs of a given size

* Introduced Big-O notation: captures the rate at which the number of
steps taken by the algorithm grows wrt size of input n, "as n gets large’

- Compared array lists vs linked lists

C : : 0(“2)
» Compared linear vs binary search

O(n)

Time —»

O(1)

Number of Elements —

Joday: Searching and Sorting

- Review recursive implementation of binary search

- Discuss some classic sorting algorithms:

« Selection sort

* Merge sort

Binary Search

The recursive search algorithm we described to search in a sorted
array I1s called binary search

[t can be much more efficient than a linear search

Takes =~ log n lookups if we can index into sequence efficiently
Which data structure supports fast access/indexing?

Accessing an item at index [In an array requires constant time

Accessing an item at index 1 in a LinkedList can require traversing
the whole list (even If it is sorted!): linear time

To get a more efficient search algorithm, it is not only important to use
the right algorithm, we need to use the right data structure as well

Binary Search

Base cases! When are we done!
It list I1s too small (or empty) to continue searching, return False

I tem we're searching for Is the middle element, return True

Check middle

v
B

mid = n//2

Binary Search

Recursive case:
Recurse on left side if item 1s smaller than middle

Recurse on right side If item is larger than middle

(

.

f item < a lst[mid],
then need to search in

a_lst[:mid] \:Ek\

mid = n//2

Binary Search

Recursive case:

Recurse on left side if item 1s smaller than middle

Recurse on right side If item is larger than middle

(

If item > a lst[mid],
then need to search in

~\

k a_lst[mid+1:] \:Ek\

I

mid = n//2

def binary_search(seq, item):
"HHUAssume seq i1s sorted. If item 1is
in seq, return True; else return False.

n = len(seq)

?fbﬁsica?e : Technically, there 1s one
return False small problem with our

mid = n // 2 implementation. List splicing

mid_elem = seq[mid] s actually O(n)!

base case 2

if item == mid_elem:
return True

recurse on left
elif item < mid_elem:
left = seq[:mid]
return binary_search(left, item)

recurse on right
else:
right = seqlmid+1:]
return binary_search(right, item)

Binary Search: Improvec

def binary_search_helper(seq, item, start, end):
'''"Recursive helper function used 1in binary search''’

base case 1
if start > end:
return False

Passing start/end indices as
arguments avoids the need
to splicel

mid = (start + end) // 2
mid_elem = seq[mid]

if item == mid_elem:
return True

recurse on left
elif item < mid_elem:
return binary_search_helper(seq, item, start, mid-1)

recurse on right
else:
return binary_search_helper(seq, item, mid+1, end)

def binary_search_improved(seq, item):

return binary_search_helper(seq, item, 0, len(seq)-1)

BINARY SEARCH

More on Big Oh

Big-O Notation

- lells you how fast an algorithm is / the run-time of algorithms

But not in seconds!

- Tells you how fast the algorithm grows in number of operations

O(log n)

Big O" Number of Operations

Understanding Big-O

Notation: n often denotes the number of elements (size)

+ Constant time or O(1): when an operation does not depend on the
number of elements, e.g.

- Addition/subtraction/multiplication of two values, or defining a
variable etc are all constant time

* Linear time or O(n): when an operation requires time proportional
to the number of elements, e.g.:

for 1tem 1n seq:
<do something>

Quadratic time or O(n?): nested loops are often quadratic, e.g,
for 1 i1n range(n):
for 3 1in range(n):

<do something>

Big-O: Common Functions

Notation: n often denotes the number of elements (size)

Our goal: understand efficiency of some algorithms at a high level

0(n%)
O(Cn)

Time —»

0C1)

Number of Elements —

Sorting

Sorting

Problem: Given a sequence of unordered elements, we need to sort

the elements in ascending order.
There are many ways to solve this problem!
Built-in sorting functions/methods in Python
sorted(): function that returns a new sorted list

sort(): list method that mutates and sorts the list

Today: how do we design our own sorting algorithm?
Question: What Is the best (most efficient) way to sort n items?

We will use Big-O to find out!

Selection Sort

A possible approach to sorting elements in a list/array:
Find the smallest element and move (swap) it to the first posrtion

Repeat: find the second-smallest element and move It to the
second position, and so on

Selection Sort

Find the smallest element and move (swap) It to the first position

Repeat: find the second-smallest element and move It to the second
position, and so on

Selection Sort

Find the smallest element and move (swap) It to the first position

Repeat: find the second-smallest element and move It to the second
position, and so on

Selection Sort

Find the smallest element and move (swap) It to the first position

Repeat: find the second-smallest element and move 1t to the second
position, and so on

Selection Sort

Find the smallest element and move (swap) It to the first position

Repeat: find the second-smallest element and move It to the second

position, and so on

The gold bars represent the sorted portion of the list.

Selection Sort

Find the smallest element and move (swap) It to the first position

Repeat: find the second-smallest element and move 1t to the second

position, and so on

The gold bars represent the sorted portion of the list.

Selection Sort

Find the smallest element and move (swap) It to the first position

Repeat: find the second-smallest element and move It to the second

position, and so on

The gold bars represent the sorted portion of the list.

Selection Sort

Find the smallest element and move (swap) It to the first position

Repeat: find the second-smallest element and move 1t to the second

position, and so on

The gold bars represent the sorted portion of the list.

Selection Sort

Find the smallest element and move (swap) It to the first position

Repeat: find the second-smallest element and move It to the second

position, and so on

The gold bars represent the sorted portion of the list.

Selection Sort

Find the smallest element and move (swap) It to the first position

Repeat: find the second-smallest element and move 1t to the second

position, and so on

The gold bars represent the sorted portion of the list.

Selection Sort

Find the smallest element and move (swap) It to the first position

Repeat: find the second-smallest element and move It to the second

position, and so on

The cold bars represent the sorted portion of the list.

Selection Sort

Find the smallest element and move (swap) It to the first position

Repeat: find the second-smallest element and move It to the second

position, and so on

The gold bars represent the sorted portion of the list.

And now we're finally done!

Selection Sort

Generalize: For each index i in the list 1st, we need to find the min
tem in Lst[i:] sowe canreplace Lst[i] with that item

In fact we need to find the position min_1ndexX of the item that is
the minimum in Lst[i:]

Reminder: how to swap values of variables @ and b?
in-line swapping: a, b = b, a

How do we implement this algorithm?

Selection Sort

def selection_sort(my_lst):

"""Selection sort of a given mutable sequence my_lst,
sorts my_Llst by mutating it. Uses selection sort."""

You will work on this helper

find size function in Lab 10

n = len(my_1st)

traverse through all elements
for i in range(n):

find min element in the sublist from index i1i+1 to end
min_index = get min_index(my_lst, 1i)

swap min element with current element at 1
my Ust[i], my_1st[min_index] = my_1lst[min_index], my_lst[i]

Selection Sort

def selection_sort(my_lst):

"""Selection sort of a given mutable sequence my_lst,
sorts my_Llst by mutating it. Uses selection sort."""

Even without an implementation,
find size can we guess how many steps
n = len(my_1st) does this function need to take!?

traverse through all elements
for i in range(n):

find min element in the sublist from index i+1 to end
min_index = get min_index(my_lst, 1i)

swap min element with current element at 1
my Ust[i], my_1st[min_index] = my_1lst[min_index], my_lst[i]

Selection Sort Analysis

The helper function get_min_index must iterate through index 1 to
N to find the min item

When 1 = 0 thisis n steps

When 1

1 thisis N=1 steps
When 1 = 2 thisis N—=2 steps
And so on,until 1 = n=1 thisis 1 step

Thus overall number of steps is sum of inner loop steps
n-1H+n-2)+--4+0n+n-1H+m-2)+--+1

What is this sum? (You will see this in MATH 200 if you take 1t.)

Selection Sort Analysis: Visual

n+Mm1)+...+2+1=nn+1)/2

N\
\

Selection Sort Analysis: Algebraic

S=n+m-1)+n-2)+--+24+1
+ S=14+24+--+m-=-2)+(n—-1)+n

2S=m+D+n+DH)+---+@+D+m+1D)+ @B+ 1)

2S5=n+1)-n
S=mn+1)-n-1/2

- Total number of steps taken by selection sort is thus:

. O(n(n+ 1)/2) = 0m(n+1)) =0 +n) = 00>

How Fast |s Selection Sort!?

2

- Selection sort takes approximately n“ steps!

O(n?)

O(n)

Time ——

O(1)

Number of Elements —>

More Efficient Sorting:
Merge Sort

JTowards an O(nlogn) Algorithm

- There are other sorting algorithms that compare and rearrange elements in

different ways, but are still O(n?) steps

» Any algorithm that takes n steps to move each item n positions (in

the worst case) will take at least O(n?) steps
. To do better than n?, we need to move an item in fewer than n steps

* We can sort in O(nlog n) time if we are clever: Merge sort algorithm

(Invented by John von Neumann in 1945)

Merge Sort: Basic |dea

- If we split the list in half, sorting the left and right half are smaller
versions of the same problem

» Algorithm:

» (Divide) Recursively sort left and right half (O(log n))

* (Unite) Merge the sorted halves into a single sorted list (O(n))

n = len(lst)

12 219 | 4 11 /114 5 13

W
=

1st

m n//2

Merging Sorted Lists

Problem. Given two sorted lists @ and b, how quickly can we merge
them Into a single sorted list?

a b
2 41 9 11 12 11 3.5 7113 14
1]

merged list C

Merging Sorted Lists

salil <= blj] ?

* Yes,all] appendedto C
+ No,b[j] appended to C
d
2 4] 9 11 12
1

1

3

5

/113 14

‘x

]

merged list C

Merging Sorted Lists

salil <= b[j] ?
- Yes,a[1] appended to C
+ No,b[j] appended to C

a b

2 4 9 11 12 1 3.5 711314

k merged list cC

Merging Sorted Lists

salil <= blj] ?

. Yes,a[i] appended to C
- No,b[j] appended to C
d
2 4 9111112 11 315 7 13 14
i ;
1

k merged list cC

Merging Sorted Lists

salil <= blj] ?

. Yes,a[i] appended to C
- No,b[j] appended to C
d
2 4 9111112 11 315 7 13 14
' ;
1

k merged list cC

Merging Sorted Lists

salil <= blj] ?

. Yes,a[i] appended to C
- No,b[j] appended to C
d
2 4 9111112 11 315 7 13 14
' !
1 3

k merged list c

Merging Sorted Lists

salil <= b[j] ?
- Yes,a[1] appended to C
+ No,b[j] appended to C

a b
2 4 9 11 12 1 35 7 113 14
i]

11213 |4 |5 I 9 | 11| 12 |13 | 14

*

merged list cC k

Merging Sorted Lists

def merge(a, b):
"""Merges two sorted lists a and b,
and returns new merged list c"""

Walk through lists a, b, ¢ # ir_\itli(alige ;ar;ables
. o e i, J, = ’ ’
Maintaining current position of len a, len b = len(a), len(b)

c =[]
traverse and populate new list
while 1 < len_a and j < len_b:

indices 1, j, k

Compare ali] and b[J],

| | | if alil <= bljl:
whichever is smaller gets put In it alil <= bl

c.append(alil)

the spot of c[K] i 4= 1
else: |
Merging two sorted lists into E'igpind(b[l“

one is an O(n) step algorithm!

handle remaining values
. if 1 < len_a:
Can use this merge procedure c.extend(ali:])

to design Our recursive merge clif | < lenb:
sort algorithm! c.extend(b[j:])

return c

Merge Sort Algorithm

def merge_sort(1lst):

» Base case: If list Is empty or ninGiven a list lst, returns
contains a single element: it is a new list that is 1st sorted
already sorted in ascending order."""

n = len(lst)

 Recursive case:
base case

- Recursively sort left and if n ==0 or n ==
right halves return 1st
- Merge the sorted lists into a else:

single list and return it m = n//2 # middle
recurse on left & right half
sort_1lt = merge_sort(lst[:m])
sort_rt = merge_sort(lst[m:])

» Question:

- Where Is the sorting

| I
actually taking places # return merged list

return merge(sort_1t, sort_rt)

11

13

Merge Sort Example
121 219 | 4 |11 141 5 13
e S
121 21 9 4 11 14 5 13
2~ SN &~ N

121 2 [|19 | 4 |11 141 5 13

A" "ANA"

12(12119 ||4 |11 14| 5 |13
5

Merge Sort Exam

D|e

Q’E 1{7 _5{13
9 || 4 |11 1| 7| |14 5’(1?
L'V 4 h'V4
4 9 |11 3@1314
\/
9 | 11 12 3 /5 7 13|14
~ ,—
34 5 9 | 11|12 |13 | 14

MERGE SORT

R 5
5,1 el e

N
e
—
1x)
Y,

ﬁif,....nl‘

MERGE SORT

V

MERGE SORT

%JLM |

@

5

3 5@
J-kalfll\ W %'%

i instructions.com/merge-sort/ m
v1.2, CC by-nc-sa 4.0

//

/

O

) -\3

Merge Sort Analysis: Basic |dea

- If we split the list in half, sorting the left and right half are smaller
versions of the same problem

» Algorithm Analysis Rough ldea:

- (Divide) Recursively sort left and right half: happens log n times

+ (Unite) Merge the sorted halves into a single sorted list; takes O(n)

times to merge two lists of n items

n = len(lst)

12 219 | 4 11 /114 5 13

W
=

1st

m n//2

Big Oh Comparisons

. Selection sort: O(n?)

»+ Merge sort: O(nlog n)

O(n?) O(n log n)

O(n)

Time —»

O(1)

Number of Elements —>

