
CS134 Lecture 31:  
Measuring Efficiency



Announcements & Logistics
• HW 10 will be released today, due Mon @ 10 pm

• Last HW 

• Lab 9 Boggle (Parts 1& 2) due Wed/Thurs at 10 pm

• Make sure your completed game satisfies all of the expected behavior 
mentioned in handout

• Test your game thoroughly!
• Not just "normal game behavior"
• Stress test it with unexpected clicks, etc

• CS134 Scheduled Final:  Friday,  May 17,  9:30 AM

Do You Have Any Questions?



Last Time:  Linked Lists
• Learned about linked lists

• Did a mix of list special methods using recursion and loops

• Many more methods are possible: see code on course schedule



Today
• Start discussing efficiency trade-offs surrounding certain operations, such 

as append and prepend, to a data type such as Linked List 

• Introduce how we measure efficiency in Computer Science

• Discuss efficiency of some classic algorithms

• Linear search

• Binary search



Linked List Efficiency
• How can we compare the efficiency of the following LinkedList 

operations?

• append an item at the end of a LinkedList

• prepend an item to the beginning of a LinkedList

• Any thoughts on which is "faster" (without defining efficiency formally)

• append needs to traverse the entire list to find last item

• "number of steps" proportional to number of items

• prepend just needs to change self._rest of newly inserted item

• this is independent of how many items are in the LinkedList

• This is intuitively why append is more efficient than prepend

• For more formal discussion: need to figure out what we want to measure



Measuring Efficiency



Measuring Efficiency
• How do we measure the efficiency of our program?

• We want programs that run "fast"
• How should we measure this?

• One idea:  use a stopwatch to see how long it takes
• Reasonable proxy 
• But, what is it really measuring?

• Suppose I run the same program on a really slow/old computer vs a 
really powerful supercomputer

• Stopwatch will measure different times!
• Are we measuring how fast our program is or how fast the 

computer executes it?



Measuring Efficiency
• How do we measure the efficiency of our program?

• We want programs that run "fast"
• How should we measure this?

• One idea:  use a stopwatch to see how long it takes
• Measures how long a piece of code takes on this machine on 

this particular input 

• Machine (and input) dependent
• We want to isolate our program’s efficiency  

• How well does it scale to larger inputs?
• How does it compare to other solutions to the same problem:  

which one is better?



Efficiency Metric: Goals
We want a method to evaluate efficiency that:

• Is machine and language independent 

• Analyze the algorithm (problem-solving approach) 

• Provides guarantees that hold for different types of inputs 

• Some inputs may be "easy" to work with while others are not

• Captures the dependence on input size 

• Determine how the performance "scales" when the input gets bigger

• Captures the right level of specificity 

• We don't want to be too specific (cumbersome)

• Measure things that matter, ignore what doesn't



Platform/Language Independent
Machine and language independence 

• We want to evaluate how good the algorithm is, rather than how 
good the machine or implementation is

• Basic idea: Count the number of steps taken by the algorithm
• Sometimes referred to as the "running time"



Worst-Case Analysis
• We can't just analyze our algorithm on a few inputs and declare victory

• Best case.  Minimum number of steps taken over all possible 
inputs of a given size

• Average case.  Average number of steps taken over all possible 
inputs of a given size

• Worst case.  Maximum number of steps taken over all possible 
inputs of a given size.

• Benefit of worst case analysis:

• Regardless of input size, we can conclude that the algorithm always 
does at least as well as the pessimistic analysis



Dependence on Input Size
• We generally don't care about performance on "small inputs"
• Instead we care about "the rate at which the completion time grows" 

with respect to the input size
• For example, consider the area of a square or circle: while the formula 

for each is different, they both grow at the same rate wrt radius
• doubling radius increases area by 4x, tripling increases by 9x



Dependence on Input Size:  Big-O
• Big-O notation in Computer Science is a way of quantifying (in fact, 

upper bounding) the growth rate of algorithms/functions wrt input size
• For example: 

• A square of side length  has area . 

• A circle of radius  has area .

r O(r2)

r O(r2)



Dependence on Input Size:  Big-O
• Big-O notation captures the rate at which the number of steps taken 

by the algorithm grows wrt size of input , "as  gets large"

• Not precise by design, it ignores information about:

• Constants (that do not depend on input size ), e.g. 

• Lower-order terms: terms that contribute to the growth but are 
not dominant:  

• Powerful tool for predicting performance behavior :  focuses on what 
matters, ignores the rest

• Separates fundamental improvements from smaller optimizations

• Won't study this notion too formally:  covered in CS136 and CS256!

n n

n 100n = O(n)

O(n2 + n + 10) = O(n2)



Append vs Prepend:  Big Oh
• Let's revisit append vs prepend efficiency 

• How does the cost of append grow with number of items in LinkedList?

• Need to traverse len(LinkedList) items at least

• Grows linearly with input size

• How does the cost of prepend grow with number of items in 
LinkedList?

• Independent of input size!

• We call this  or constant time:  

• Essentially saying does not grow as input size gets large

O(1)



Lists (Arrays) vs. Linked Lists
Efficiency Trade Offs



Lists vs Linked Lists
• Linked Lists:  “pointer-based” data structure, items need not be 

contiguous in memory

• Arrays:  index-based data structure items are always stored 
contiguously in memory (think of a Python built-in list as an array)

5 3 11 None
_value 

_rest 

_value 

_rest 

... 

... 

head 

5 3 11 ... 

0 1 2



Lists vs Linked Lists
• Linked Lists:   Can grow and shrink on the fly:  do not need to know 

size at the time of creation (therefore no wasted space!)

• Arrays:  index-based data structure items are always stored 
contiguously in memory (think of a Python built-in list as an array)

5 3 11 None
_value 

_rest 

_value 

_rest 

... 

... 

head 

5 3 11 ... 

0 1 2



Array vs Linked Lists
• Inserts at the beginning:  which one is better?

5 3 11 None
_value 

_rest 

_value 

_rest 

... 

... 

head 

5 3 11 ... 

0 1 2



Array vs Linked Lists
• Linked list steps:  

• Point head to new element
• Point rest of new element to old list
• These steps don't depend on size of list

• Therefore, run-time is constant, that is,  timeO(1)

5 3 11 None

_value 

_rest 

_value 

_rest 

... 

... 

head 

8
_rest 

_value 



Array vs Linked Lists
• Now consider an array-based list

• To insert at index 0, we need to shift every element over by one spot 

• This takes time proportional to the size:  linear time or  

• So when are arrays more efficient?

• When indexing elements:  they give direct access  

• Linked list:  we need to traverse the list to get to the element  

O(n)

O(1)

O(n)

5 3 11 ... 

0 1 2 3

8



So Which is Better?
• It depends!
• Think about what operations are a priority in your program!

• Choose accordingly
• Let's take an example of an application where one of the data 

structures is way more efficient than the other



Searching in a Sequence



Search
• Search.  Given an input sequence seq, search if a given item is in the 

sequence.

• For example, if a name is in a sequence of student names  

• Input: a sequence of  items and a query item

• For now suppose this can be in any order

• Output: True if query item is in sequence, else False

• Can use in operator to do this (calls __contains__)

• But without knowing how it works, can't analyze efficiency

• Let's figure out a direct way to solve this problem 

n



• First algorithm:   iterate through the items in sequence and compare each 
item to query

def linear_search(item, seq): 
    for elem in seq: 
       if elem == item: 
          return True 
    return False

Might return early if item is first elem 
in seq, but we are interested in the 

worst case analysis; this happens 
if item is not in seq at all

Searching in a Sequence

5 3 11 ... 

0 1 2 3

8



• In the worst case, we have to walk through the entire sequence

• Overall, the number of steps is linear in   : we write  in Big Ohn O(n)

5 3 11 ... 

0 1 2 3

8

Searching in a Sequence

def linear_search(item, seq): 
    for elem in seq: 
       if elem == item: 
          return True 
    return False

Loop runs  items 
in worst case

n

One equality check per 
iteration:  assume checking 

two items is one step



Searching in an Array
• Can we do better?

• Not if the elements are in arbitrary order

• What if the sequence is sorted?

• Can we utilize this somehow and search more efficiently?

5 7 11 ... 

0 1 2 3

3

How do we search for an item (say 10) in a sorted array?



Let’s Play a Game
• I’m thinking of a number between 0 and 100…

• If you guess a number, I’ll tell you either :
• You’ve guessed my number!
• My number is larger than your guess
• My number is smaller than your guess

• What is your guessing strategy?
• What if I picked a number between 0 and 1 million?



Example:  Dictionary
• How do we look up a word in a (physical) dictionary?

• Words are listed in alphabetical order



Example:  Dictionary
Finding the definition of "octopus"

Open pages at ~half, is word 
on left or right?

Open pages at ~half, is word 
on left or right?

Open pages at ~half, is 
word on left or right?

Open pages at ~half, is word 
on left or right?

Find the word!



• Goal:   Analyze # pages we need to look at until we find the word

• We want the worst case:  possible to get lucky and find the word right 
on the middle page, but we don't want to consider luck!

• Each time we look at the “middle” of the remaining pages, the number of 
pages we need to look at is divided by 2

• A 1024-page dictionary requires at most 11 lookups:  
1024 pages, < 512, <256, <128, <64, <32, <16, <8, <4, <2,  <1 page.

• Only needed to look at 11 pages out of 1024 !

• Challenge: What if we have an  page dictionary,  
what function of  characterizes the (worst-case)  
number of lookups?

n
n

How Good is This Method?



• Logarithms are the inverse function to exponentiation 

•  describes the exponent to which  must be raised to produce 

• That is, 

• Alternatively: 

•  (essentially) describes the number of times  must be divided 
by  to reduce it to  or below

• For us, here’s the important takeaway:

• How many times can we divide  by  until we get down to 

•  

log2 n 2 n

2log2 n = n

log2 n n
2 1

n 2 1

≈ log2 n

Logarithms:  our favorite function



• When you double the number of 
elements, it only increases the number 
of operations by 1

• 2 items in the list, 1 operation

• log 2 = 1

• When you have 4 items, increases 
operations to 2

• log 4 = 2

• When you have 8 items, only 3 
operations

• log 8 = 3

O(log n)



• The recursive search algorithm we described to search in a sorted 
array is called binary search 

• It can be much more efficient than a linear search 

• Takes   lookups if we can index into sequence efficiently

• Which data structure supports fast access/indexing?

• Accessing an item at index  in an array requires constant time

• Accessing an item at index  in a LinkedList can require traversing 
the whole list (even if it is sorted!):   linear time

• To get a more efficient search algorithm, it is not only important to use 
the right algorithm, we need to use the right data structure as well!

≈ log n

i

i

Binary Search



• Base cases?  When are we done?

• If list is too small (or empty) to continue searching, return False

• If item we’re searching for is the middle element, return True

Binary Search

mid = n//2

Check middle



• Recursive case: 

• Recurse on left side if item is smaller than middle

• Recurse on right side if item is larger than middle

Binary Search

mid = n//2

If item < a_lst[mid], then need 
to search in a_lst[:mid]



• Recursive case: 

• Recurse on left side if item is smaller than middle

• Recurse on right side if item is larger than middle

Binary Search

mid = n//2

If item > a_lst[mid], then need 
to search in a_lst[mid+1:]



Technically, there is one 
small problem with our 

implementation.  List splicing 
is actually O(n)! 

def binary_search(seq, item): 
    """Assume seq is sorted. If item is  
    in seq, return True; else return False.""" 

    n = len(seq) 

    # base case 1 
    if n == 0: 
        return False 
     
    mid = n // 2 
    mid_elem = seq[mid] 

    # base case 2 
    if item == mid_elem: 
        return True 
     
    # recurse on left 
    elif item < mid_elem: 
        left = seq[:mid] 
        return binary_search(left, item) 
         
    # recurse on right 
    else: 
        right = seq[mid+1:] 
        return binary_search(right, item) 



Binary Search:   Improved

Passing start/end indices as 
arguments avoids the need 

to splice!

def binary_search_helper(seq, item, start, end): 
    '''Recursive helper function used in binary search'''  
         
    # base case 1 
    if start > end: 
        return False 
     
    mid = (start + end) // 2  
    mid_elem = seq[mid] 

    if item == mid_elem: 
        return True 
     
    # recurse on left 
    elif item < mid_elem: 
        return binary_search_helper(seq, item, start, mid-1) 
         
    # recurse on right 
    else: 
        return binary_search_helper(seq, item, mid+1, end) 

def binary_search_improved(seq, item): 

    return binary_search_helper(seq, item, 0, len(seq)-1) 





More on Big Oh



• Tells you how fast an algorithm is / the run-time of algorithms

• But not in seconds!

• Tells you how fast the algorithm grows in number of operations

Big-O Notation

O(log n)
"Big O" Number of Operations



Understanding Big-O
• Notation:   often denotes the number of elements (size)

• Constant time or :  when an operation does not depend on the 
number of elements, e.g.

• Addition/subtraction/multiplication of two values, or defining a 
variable etc are all constant time

• Linear time or :  when an operation requires time proportional 
to the number of elements, e.g.:

for item in seq:  
   <do something> 

• Quadratic time or :   nested loops are often quadratic, e.g.,
for i in range(n):
   for j in range(n):
        <do something>

n

O(1)

O(n)

O(n2)



• Notation:   often denotes the number of elements (size)
• Our goal:  understand efficiency of some algorithms at a high level 

n

Big-O:  Common Functions

O(1)

O(n)

O(n2)

O(log n)


