
CS134 Lecture 31:
Measuring Efficiency

Announcements & Logistics
• HW 10 will be released today, due Mon @ 10 pm

• Last HW

• Lab 9 Boggle (Parts 1& 2) due Wed/Thurs at 10 pm

• Make sure your completed game satisfies all of the expected behavior
mentioned in handout

• Test your game thoroughly!
• Not just "normal game behavior"
• Stress test it with unexpected clicks, etc

• CS134 Scheduled Final: Friday, May 17, 9:30 AM

Do You Have Any Questions?

Last Time: Linked Lists
• Learned about linked lists

• Did a mix of list special methods using recursion and loops

• Many more methods are possible: see code on course schedule

Today
• Start discussing efficiency trade-offs surrounding certain operations, such

as append and prepend, to a data type such as Linked List

• Introduce how we measure efficiency in Computer Science

• Discuss efficiency of some classic algorithms

• Linear search

• Binary search

Linked List Efficiency
• How can we compare the efficiency of the following LinkedList

operations?

• append an item at the end of a LinkedList

• prepend an item to the beginning of a LinkedList

• Any thoughts on which is "faster" (without defining efficiency formally)

• append needs to traverse the entire list to find last item

• "number of steps" proportional to number of items

• prepend just needs to change self._rest of newly inserted item

• this is independent of how many items are in the LinkedList

• This is intuitively why append is more efficient than prepend

• For more formal discussion: need to figure out what we want to measure

Measuring Efficiency

Measuring Efficiency
• How do we measure the efficiency of our program?

• We want programs that run "fast"
• How should we measure this?

• One idea: use a stopwatch to see how long it takes
• Reasonable proxy
• But, what is it really measuring?

• Suppose I run the same program on a really slow/old computer vs a
really powerful supercomputer

• Stopwatch will measure different times!
• Are we measuring how fast our program is or how fast the

computer executes it?

Measuring Efficiency
• How do we measure the efficiency of our program?

• We want programs that run "fast"
• How should we measure this?

• One idea: use a stopwatch to see how long it takes
• Measures how long a piece of code takes on this machine on

this particular input

• Machine (and input) dependent
• We want to isolate our program’s efficiency

• How well does it scale to larger inputs?
• How does it compare to other solutions to the same problem:

which one is better?

Efficiency Metric: Goals
We want a method to evaluate efficiency that:

• Is machine and language independent

• Analyze the algorithm (problem-solving approach)

• Provides guarantees that hold for different types of inputs

• Some inputs may be "easy" to work with while others are not

• Captures the dependence on input size

• Determine how the performance "scales" when the input gets bigger

• Captures the right level of specificity

• We don't want to be too specific (cumbersome)

• Measure things that matter, ignore what doesn't

Platform/Language Independent
Machine and language independence

• We want to evaluate how good the algorithm is, rather than how
good the machine or implementation is

• Basic idea: Count the number of steps taken by the algorithm
• Sometimes referred to as the "running time"

Worst-Case Analysis
• We can't just analyze our algorithm on a few inputs and declare victory

• Best case. Minimum number of steps taken over all possible
inputs of a given size

• Average case. Average number of steps taken over all possible
inputs of a given size

• Worst case. Maximum number of steps taken over all possible
inputs of a given size.

• Benefit of worst case analysis:

• Regardless of input size, we can conclude that the algorithm always
does at least as well as the pessimistic analysis

Dependence on Input Size
• We generally don't care about performance on "small inputs"
• Instead we care about "the rate at which the completion time grows"

with respect to the input size
• For example, consider the area of a square or circle: while the formula

for each is different, they both grow at the same rate wrt radius
• doubling radius increases area by 4x, tripling increases by 9x

Dependence on Input Size: Big-O
• Big-O notation in Computer Science is a way of quantifying (in fact,

upper bounding) the growth rate of algorithms/functions wrt input size
• For example:

• A square of side length has area .

• A circle of radius has area .

r O(r2)

r O(r2)

Dependence on Input Size: Big-O
• Big-O notation captures the rate at which the number of steps taken

by the algorithm grows wrt size of input , "as gets large"

• Not precise by design, it ignores information about:

• Constants (that do not depend on input size), e.g.

• Lower-order terms: terms that contribute to the growth but are
not dominant:

• Powerful tool for predicting performance behavior : focuses on what
matters, ignores the rest

• Separates fundamental improvements from smaller optimizations

• Won't study this notion too formally: covered in CS136 and CS256!

n n

n 100n = O(n)

O(n2 + n + 10) = O(n2)

Append vs Prepend: Big Oh
• Let's revisit append vs prepend efficiency

• How does the cost of append grow with number of items in LinkedList?

• Need to traverse len(LinkedList) items at least

• Grows linearly with input size

• How does the cost of prepend grow with number of items in
LinkedList?

• Independent of input size!

• We call this or constant time:

• Essentially saying does not grow as input size gets large

O(1)

Lists (Arrays) vs. Linked Lists
Efficiency Trade Offs

Lists vs Linked Lists
• Linked Lists: “pointer-based” data structure, items need not be

contiguous in memory

• Arrays: index-based data structure items are always stored
contiguously in memory (think of a Python built-in list as an array)

5 3 11 None
_value

_rest

_value

_rest

...

...

head

5 3 11 ...

0 1 2

Lists vs Linked Lists
• Linked Lists: Can grow and shrink on the fly: do not need to know

size at the time of creation (therefore no wasted space!)

• Arrays: index-based data structure items are always stored
contiguously in memory (think of a Python built-in list as an array)

5 3 11 None
_value

_rest

_value

_rest

...

...

head

5 3 11 ...

0 1 2

Array vs Linked Lists
• Inserts at the beginning: which one is better?

5 3 11 None
_value

_rest

_value

_rest

...

...

head

5 3 11 ...

0 1 2

Array vs Linked Lists
• Linked list steps:

• Point head to new element
• Point rest of new element to old list
• These steps don't depend on size of list

• Therefore, run-time is constant, that is, timeO(1)

5 3 11 None

_value

_rest

_value

_rest

...

...

head

8
_rest

_value

Array vs Linked Lists
• Now consider an array-based list

• To insert at index 0, we need to shift every element over by one spot

• This takes time proportional to the size: linear time or

• So when are arrays more efficient?

• When indexing elements: they give direct access

• Linked list: we need to traverse the list to get to the element

O(n)

O(1)

O(n)

5 3 11 ...

0 1 2 3

8

So Which is Better?
• It depends!
• Think about what operations are a priority in your program!

• Choose accordingly
• Let's take an example of an application where one of the data

structures is way more efficient than the other

Searching in a Sequence

Search
• Search. Given an input sequence seq, search if a given item is in the

sequence.

• For example, if a name is in a sequence of student names

• Input: a sequence of items and a query item

• For now suppose this can be in any order

• Output: True if query item is in sequence, else False

• Can use in operator to do this (calls __contains__)

• But without knowing how it works, can't analyze efficiency

• Let's figure out a direct way to solve this problem

n

• First algorithm: iterate through the items in sequence and compare each
item to query

def linear_search(item, seq):
 for elem in seq:
 if elem == item:
 return True
 return False

Might return early if item is first elem
in seq, but we are interested in the

worst case analysis; this happens
if item is not in seq at all

Searching in a Sequence

5 3 11 ...

0 1 2 3

8

• In the worst case, we have to walk through the entire sequence

• Overall, the number of steps is linear in : we write in Big Ohn O(n)

5 3 11 ...

0 1 2 3

8

Searching in a Sequence

def linear_search(item, seq):
 for elem in seq:
 if elem == item:
 return True
 return False

Loop runs items
in worst case

n

One equality check per
iteration: assume checking

two items is one step

Searching in an Array
• Can we do better?

• Not if the elements are in arbitrary order

• What if the sequence is sorted?

• Can we utilize this somehow and search more efficiently?

5 7 11 ...

0 1 2 3

3

How do we search for an item (say 10) in a sorted array?

Let’s Play a Game
• I’m thinking of a number between 0 and 100…

• If you guess a number, I’ll tell you either :
• You’ve guessed my number!
• My number is larger than your guess
• My number is smaller than your guess

• What is your guessing strategy?
• What if I picked a number between 0 and 1 million?

Example: Dictionary
• How do we look up a word in a (physical) dictionary?

• Words are listed in alphabetical order

Example: Dictionary
Finding the definition of "octopus"

Open pages at ~half, is word
on left or right?

Open pages at ~half, is word
on left or right?

Open pages at ~half, is
word on left or right?

Open pages at ~half, is word
on left or right?

Find the word!

• Goal: Analyze # pages we need to look at until we find the word

• We want the worst case: possible to get lucky and find the word right
on the middle page, but we don't want to consider luck!

• Each time we look at the “middle” of the remaining pages, the number of
pages we need to look at is divided by 2

• A 1024-page dictionary requires at most 11 lookups:
1024 pages, < 512, <256, <128, <64, <32, <16, <8, <4, <2, <1 page.

• Only needed to look at 11 pages out of 1024 !

• Challenge: What if we have an page dictionary,
what function of characterizes the (worst-case)
number of lookups?

n
n

How Good is This Method?

• Logarithms are the inverse function to exponentiation

• describes the exponent to which must be raised to produce

• That is,

• Alternatively:

• (essentially) describes the number of times must be divided
by to reduce it to or below

• For us, here’s the important takeaway:

• How many times can we divide by until we get down to

•

log2 n 2 n

2log2 n = n

log2 n n
2 1

n 2 1

≈ log2 n

Logarithms: our favorite function

• When you double the number of
elements, it only increases the number
of operations by 1

• 2 items in the list, 1 operation

• log 2 = 1

• When you have 4 items, increases
operations to 2

• log 4 = 2

• When you have 8 items, only 3
operations

• log 8 = 3

O(log n)

• The recursive search algorithm we described to search in a sorted
array is called binary search

• It can be much more efficient than a linear search

• Takes lookups if we can index into sequence efficiently

• Which data structure supports fast access/indexing?

• Accessing an item at index in an array requires constant time

• Accessing an item at index in a LinkedList can require traversing
the whole list (even if it is sorted!): linear time

• To get a more efficient search algorithm, it is not only important to use
the right algorithm, we need to use the right data structure as well!

≈ log n

i

i

Binary Search

• Base cases? When are we done?

• If list is too small (or empty) to continue searching, return False

• If item we’re searching for is the middle element, return True

Binary Search

mid = n//2

Check middle

• Recursive case:

• Recurse on left side if item is smaller than middle

• Recurse on right side if item is larger than middle

Binary Search

mid = n//2

If item < a_lst[mid], then need
to search in a_lst[:mid]

• Recursive case:

• Recurse on left side if item is smaller than middle

• Recurse on right side if item is larger than middle

Binary Search

mid = n//2

If item > a_lst[mid], then need
to search in a_lst[mid+1:]

Technically, there is one
small problem with our

implementation. List splicing
is actually O(n)!

def binary_search(seq, item):
 """Assume seq is sorted. If item is
 in seq, return True; else return False."""

 n = len(seq)

 # base case 1
 if n == 0:
 return False

 mid = n // 2
 mid_elem = seq[mid]

 # base case 2
 if item == mid_elem:
 return True

 # recurse on left
 elif item < mid_elem:
 left = seq[:mid]
 return binary_search(left, item)

 # recurse on right
 else:
 right = seq[mid+1:]
 return binary_search(right, item)

Binary Search: Improved

Passing start/end indices as
arguments avoids the need

to splice!

def binary_search_helper(seq, item, start, end):
 '''Recursive helper function used in binary search'''

 # base case 1
 if start > end:
 return False

 mid = (start + end) // 2
 mid_elem = seq[mid]

 if item == mid_elem:
 return True

 # recurse on left
 elif item < mid_elem:
 return binary_search_helper(seq, item, start, mid-1)

 # recurse on right
 else:
 return binary_search_helper(seq, item, mid+1, end)

def binary_search_improved(seq, item):

 return binary_search_helper(seq, item, 0, len(seq)-1)

More on Big Oh

• Tells you how fast an algorithm is / the run-time of algorithms

• But not in seconds!

• Tells you how fast the algorithm grows in number of operations

Big-O Notation

O(log n)
"Big O" Number of Operations

Understanding Big-O
• Notation: often denotes the number of elements (size)

• Constant time or : when an operation does not depend on the
number of elements, e.g.

• Addition/subtraction/multiplication of two values, or defining a
variable etc are all constant time

• Linear time or : when an operation requires time proportional
to the number of elements, e.g.:

for item in seq:  
 <do something>

• Quadratic time or : nested loops are often quadratic, e.g.,
for i in range(n):
 for j in range(n):
 <do something>

n

O(1)

O(n)

O(n2)

• Notation: often denotes the number of elements (size)
• Our goal: understand efficiency of some algorithms at a high level

n

Big-O: Common Functions

O(1)

O(n)

O(n2)

O(log n)

