
CS134 Lecture 29:

Special Methods & Linked Lists

Announcements & Logistics
• HW 9 due tonight @ 10 pm on GLOW

• Short: 6 questions for practice on OOP concepts

• Lab 9 Boggle: two-week lab now in progress

• Part 2 due May 1/2 (handout posted)

• Part 2 also has a prelab!

• Asks you to draw out the Boggle game logic

• Draw it on a sheet of paper and bring the diagram to lab

• Make sure it is legible and clear!

Do You Have Any Questions?

Last Time
• Learn how to implement several special methods which let us utilize

built-in operators in Python for user-defined types

• Discussed options to store an ordered mutable sequence:

• Arrays: elements stored contiguously in memory

• Upside: fast accesses (constant # of steps)

• Downside: slow inserts (might have to shift everything!)

• Linked List: elements stored (possibly non-contiguously) but
remember the next item's location

• Upside: fast inserts at the front of list (may need to traverse
whole list for updates in middle but requires no shifting)

• Downside: slow access (might have to traverse everything!)

Today’s Plan
• Write our own implementation of LinkedList

• Implement functionality (write code) for special methods:

• __init__

• __str__

• __len__

• __getitem__

• __contains__

• Discuss at high level (without code) other functionality we may want

Our Own Class LinkedList
• Attributes:

• _value, _rest

• Recursive class:

• _rest points to another instance of the same class

• Any instance of a class that is created by using another instance of
the class is a recursive class

5 3 11 None
_value

_rest

_value

_rest

_value

_rest

class LinkedList:

 """Implements our own recursive list data
structure"""

 def __init__(self, value=None, rest=None):

 self._value = value

 self._rest = rest

Initializing Our LinkedList

5 3 11 None
_value

_rest

_value

_rest

_value

_rest

rest is another
instance of our
LinkedList class

How do we create an
empty list?

Recursive Implementation: __str__
• Let's think about how to implement a string representation of our list

• What is the base case?

• What if our list has only one item

• Just return str (value) (so if value is int, this return str(5) e.g.)

• How do we check if list only has one item in it?

• _rest is None

str() function calls __str__() method

def __str__(self):

 if self._rest is None:

 return str(self._value)

Recursive Implementation: __str__

Notice the use of
is and not ==

Python: "is None" vs " == None":  
PEP 8 (Style Guide for Python Code) says:

"Comparisons to singletons like None should always be done
with 'is' or 'is not', never the equality operators."

http://www.python.org/dev/peps/pep-0008/

str() function calls __str__() method

def __str__(self):

 if self._rest is None:

 return str(self._value)

 else:

 return str(self._value) + ', ' + str(self._rest)

Recursive Implementation: __str__

5 3 11 None
_value

_rest

_value

_rest

_value

_rest

This is recursion since str calls
__str__. The base case is

when self._rest is None

• What if we want to enclose the elements in square brackets []?

• Idea: Use a helper method that does the same thing as __str__()
on the previous slide, and then enclose its return in '[]'

Recursive Implementation: __str__

 def __get_string(self):

 '''Helper method for str of contents'''

 if self._rest is None:

 return str(self._value)

 else:

 return str(self._value) + ', ' + self._rest.__get_string()

 def __str__(self):

 return "[" + self.__get_string() + "]"

• What happens when we call print on an empty LinkedList?

• Do we want a different behavior? How do we change our code?

Empty Lists?

 def __get_string(self):

 # handle empty list

 if self._value is None and self._rest is None:

 return '' # empty list notation

 elif self._rest is None: # value is not None

 return str(self._value)

 else: # neither is None

 return str(self._value) + ', ' + self._rest.__get_string()

 def __str__(self):

 return "[" + self.__get_string() + "]"

Special Method: __len__
• __len__(self)

• Called when we use the built-in function len() in Python on an
object obj of the class: len(obj)

• We can call len() function on any object whose class has the
__len__() special method implemented

• We want to implement this special method so it tells us the number of
elements in our linked list, e.g. 3 elements in the list below

5 3 11 None
_value

_rest

_value

_rest

_value

_rest

Implementing Recursively
• As our LinkedList class is defined recursively, let's implement the
__len__ method recursively

• Method will return an int (num of elements)

• What is the base case(s)?

• What about the recursive case?

• Count self (so, +1), and then call len() on the rest of the list!

5 3 11 None
_value

_rest

_value

_rest

_value

_rest

Recursive Implementation: __len__

5 3 11 None
_value

_rest

_value

_rest

_value

_rest

 # len() function calls __len__() method

 def __len__(self):

 # base case: handle empty list first

 if self._value is None and self._rest is None:

 return 0

 # list of length 1

 elif self._rest is None:

 return 1

 #recursive case (larger than 1)

 else:

 # same as return 1 + self._rest.__len__()

 return 1 + len(self._rest)

Other Special Methods

in Operator: __contains__
• __contains__(self, val)

• When we say elem in seq in Python:

• Python calls the __contains__ special method on seq

• That is, seq.__contains__(elem)

• If we want the in operator to work for the objects of our class, we can do so by
implementing the __contains__ special method

• Basic idea:

• “Walk” along list checking values

• If we find the value we’re looking for, return True

• If we make it to the end of the list without finding it, return False

• We’ll do this recursively!

in Operator: __contains__
• __contains__(self, val)

• When we say if elem in seq in Python:

• Python calls the __contains__ special method on seq

• That is, seq.__contains__(elem)

• If we want the in operator to work for the objects of our class, we can do so by
implementing the __contains__ special method

 # in operator calls __contains__() method

 def __contains__(self, val):

 if self._value == val:

 return True

 elif self._rest is None:

 return False

 else:

 # same as calling self.__contains__(val)

 return val in self._rest

Indexing [] Operator: __getitem__
• To support the [] operator to access the item at a given index in our
LinkedList, we need to implement __getitem__

• Basic idea:

• Walk out to the element at index

• Get or set value at that index accordingly

• Recursive!

Indexing [] Operator: __getitem__
• To support the [] operator to access the item at a given index in our
LinkedList, we need to implement __getitem__

 # [] list index notation calls __getitem__() method

 def __getitem__(self, index):

 # if index is 0, we found the item we need to return

 if index == 0:

 return self._value

 # if reached end but index is not zero, index error

 elif index != 0 and self._rest == None:

 return 'IndexError!'

 else:

 # else we recurse until index reaches 0

 # remember that this implicitly calls __getitem__

 return self._rest[index - 1]

[Extra] Special Methods: 

__add__ (+), == (eq)

+ Operator: __add__
• __add__(self, other)

• When using lists, we can concatenate two lists together into one
list using the + operator (this always returns a new list)

• To support the + operator in our LinkedList class, we need to
implement __add__ special method

• Make the end of our first list point to the beginning of the other

• Basic idea:

• Walk along first list until we reach the end

• Set _rest to be the beginning of second list

• More recursion!

• __add__(self, other)

• When using lists, we can concatenate two lists together into one

list using the + operator (this always returns a new list)

• To support the + operator in our LinkedList class, we need to
implement __add__ special method

• Make the end of our first list point to the beginning of the other
 # + operator calls __add__() method

 # + operator returns a new instance of LinkedList

 def __add__(self, other):

 # other is another instance of LinkedList

 # if we are the last item in the list

 if self._rest is None:

 # set _rest to other

 self._rest = other

 else:

 # else, recurse until we reach the last item

 self._rest.__add__(other)

 return self

+ Operator: __add__

self is the “head” or
beginning of the list. Note

that it didn’t change!

Note: Technically this does
not return a new list. This is
more like extend. Let’s not

worry about this for now!

== Operator: __eq__
• __eq__(self, other)

• When using lists, we can compare their values using the == operator

• To support the == operator in our LinkedList class, we need to
implement __eq__

• We want to walk the lists and check the values

• Make sure the sizes of lists match, too

• __eq__(self, other)

• When using lists, we can compare their values using the == operator

• To support the == operator in our LinkedList class, we need to
implement __eq__

== Operator: __eq__

== operator calls __eq__() method

def __eq__(self, other):

 # If both lists are empty

 if self._rest is None and other.get_rest() is None:

 return True

 # If both are empty, value of current list elems match

 elif self._rest is not None and other.get_rest() is not None :

 same_val = self._value == other.get_value()

 same_rest = self._rest == other.get_rest()

 return same_val and same_rest 

 return False

Useful list methods: 

.append(), .prepend(), .insert()

Useful List Method: append

5 3 11
_value

_rest

_value

_rest

_value

_rest
None

val None
_value

_rest

• append(self, val)

• When using lists, we can add an element to the end of an existing list

by calling append (note that append mutates our list)

• Basic idea:

• Walk to end of list

• Create a new LinkedList(val) and add it to the end

_re
st

Useful List Method: append

5 3 11
_value

_rest

_value

_rest

_value

_rest
val None
_value

_rest

• append(self, val)

• When using lists, we can add an element to the end of an existing list

by calling append (note that append mutates our list)

• Basic idea:

• Walk to end of list

• Create a new LinkedList(val) and add it to the end

Useful List Method: append
• append(self, val)

• When using lists, we can add an element to the end of an existing list
by calling append (note that append mutates our list)

• This entails setting the _rest attribute of the last element to be a
new LinkedList with the given value.

 def append(self, val):

 # if am at the end of the list

 if self._rest is None:

 # add a new LinkedList to the end

 self._rest = LinkedList(val)

 else:

 # else recurse until we find the end

 self._rest.append(val)

Useful List Method: prepend
• prepend(self, val)

• We may also want to add elements to the beginning of our list
(this will mutate our list, similar to append)

• The prepend operation is really efficient, we don’t need to walk
through the list at all — just do some variable reassignments.

5 3 11
_value

_rest

_value

_rest

_value

_rest

_value

_rest
Noneself

 def prepend(self, val):

 old_val = self._value

 old_rest = self._rest

 self._value = val

 self._rest = LinkedList(old_val, old_rest)

Useful List Method: prepend
• prepend(self, val)

• We may also want to add elements to the beginning of our list
(this will mutate our list, similar to append)

• The prepend operation is really efficient, we don’t need to walk
through the list at all — just do some variable reassignments.

5 3 11
_value

_rest

_value

_rest

_value

_rest

_value

_rest
Noneself val

_value

_rest

old

 def prepend(self, val):

 old_val = self._value

 old_rest = self._rest

 self._value = val

 self._rest = LinkedList(old_val, old_rest)

Useful List Method: insert
• insert(self, val, index)

• Finally, we want to allow for insertions at a specific index.

• Basic idea:

• If the specified index is 0, we can just add to the beginning (easy!)

• Otherwise, we walk to the appropriate index in the list, and
reassign the _rest attribute at that location to point to a new
LinkedList with the given value, and whose _rest attribute points
to the linked list it is displacing.

11
_value

_rest

_value

_rest
5 3

_value

_rest
None

val
_value

_rest

Useful List Method: insert
• insert(self, val, index)

• Finally, we want to allow for insertions at a specific index.

• Basic idea:

• If the specified index is 0, we can just add to the beginning (easy!)

• Otherwise, we walk to the appropriate index in the list, and
reassign the _rest attribute at that location to point to a new
LinkedList with the given value, and whose _rest attribute points
to the linked list it is displacing.

11
_value

_rest

_value

_rest
5 3

_value

_rest
Noneval

_value

_rest

Useful List Method: insert
• insert(self, val, index)

• If the specified index is 0, we can just use the prepend method.

• Otherwise, check to see if we're at end of the list

• Otherwise, we walk to the appropriate index in the list, and
perform the insertion

def insert(self, val, index):

 # if index is 0, we found the item we need to return

 if index == 0:

 self.prepend(val)

 # elif we have reached the end, so just append

 elif self._rest is None:

 self._rest = LinkedList(val)

 # else we recurse until index reaches 0

 else:

 self._rest.insert(val, index - 1)

Takeaway
• Our first example of a data structure

• A data structure is a specific way to organize/layout your data

• Each data structure supports some abstract operations/methods, e.g.

• Search for item/ membership query

• Insert item at location

• Delete item at location

• Different data structure may be efficient at different operations

• E.g., among Python built-in data structures, sets are much more
efficient at inserts/queries than ordered sequences

• Next time: Discuss what does efficiency means in Computer Science

