
CSCI 134 Final Exam Reference Sheet (Spring 2024)

You are free to use any definitions from homeworks, labs, or lectures. Here is a non-exhaustive summary of useful
information..

range(start, stop, step):
range object generating integers starting at start (by default 0), going up to (but not including) stop, using step

size step (by default 1)

Slicing uses a similar structure when defining the range of elements to be sliced. If a is a sequence, then:
a[start:stop:step] returns a slice containing elements from a starting at index start (by default 0), going up to
(but not including) stop, using step size step (by default 1)

Slicing examples using sequence a = "abcdefg":

a[0:len(a):2] -> "aceg" a[1:] -> "bcdefg" a[:3] -> "abc" a[::-1] -> "gfedcba"

Useful string class methods:

s.join(lst) -> str

s is inserted in between each given string in lst. The result is returned as a new string.

Ex: " ".join(["hello", "world"]) -> "hello world"

s1.split(sep) -> lst

Return a list of the substrings in the string, using sep

as the separator string
Ex: "a,b,c".split(",") -> ["a","b","c"]

s.format(args) -> str

Return a formatted version of s, using substitutions from args, with substitutions identified by ('{' and '}').

Ex: "Fill in the {}".format("blank") -> "Fill in the blank"

s.strip() -> str

Returns a string that is equivalent to s, except all leading and trailing whitespace characters are removed.

Ex: " goodbye spaces! ".strip() -> "goodbye spaces!"

Useful list class methods:

L.append(object) -> None

append object to end of list L

L.extend(iterable) -> None

extend list L by appending each individual element from the iterable sequence iterable

List comprehensions are unnecessary but compact ways to generate a list using the syntax:
new_list = [expression for item in sequence]

Ex: [i for i in range(3)] -> [0, 1, 2] [i*2 for i in range(3)] -> [0, 2, 4]

Handy algorithms from lecture that you are not expected to memorize:

def binary_search(seq, item, start=0, end=len(seq)-1):
'''Returns True if item is present in seq'''

if start > end:
return False

mid = (start + end) // 2
if item == seq[mid]:

return True

elif item < seq[mid]:
return binary_search(seq, item, start, mid-1)

else:
return binary_search(seq, item, mid+1, end)

def merge(a, b):
'''Merges two sorted lists a and b, and returns new merged list c'''

initialize variables
i, j, k = 0, 0, 0
len_a = len(a)
len_b = len(b)
c = []

traverse and populate new list
while i < len_a and j < len_b:

if a[i] <= b[j]:
c.append(a[i])
i += 1

else:
c.append(b[j])
j += 1

handle any remaining values if one list was exhausted first
if i < len_a:

c.extend(a[i:])
elif j < len_b:

c.extend(b[j:])

return c

