CS134 Lecture 33:
Sorting
Announcements & Logistics

- **HW 10** due today @ 10 pm
 - Last HW!
- **Lab 10** starts (and hopefully finishes) in this week's labs
 - Very short lab on searching and sorting (today's lecture)
 - No prelab
 - Individual lab but can discuss strategies with lab mate
- **CS134 Scheduled Final:** **Friday, May 17, 9:30 AM**
 - Room: **TCL 123 (Wege Auditorium)** *

Do You Have Any Questions?
Last Time: Searching & Efficiency

- Searching requires scanning through entire list in the worst case
 - $O(n)$ where n is the size of the list
- We can do better if the list is sorted!
 - $O(\log n)$ by using binary search
Today: Sorting

• Discuss some classic sorting algorithms:

 • **Selection sorting** in $O(n^2)$ time

 • A brief (high level) discussion of how we can improve sorting to $O(n \log n)$

 • Overview of recursive **merge sort** algorithm
Sorting
Sorting

- **Problem:** Given a sequence of unordered elements, we need to sort the elements in ascending order.
- There are many ways to solve this problem!
- Built-in sorting functions/methods in Python
 - `sorted()`: function that returns a new sorted list
 - `sort()`: list method that mutates and sorts the list
- **Today:** how do we design our own sorting algorithm?
- **Question:** What is the best (most efficient) way to sort n items?
- We will use Big-O to find out!
Selection Sort

- A possible approach to sorting elements in a list/array:
 - Find the smallest element and move (swap) it to the first position
 - Repeat: find the second-smallest element and move it to the second position, and so on
Selection Sort

- Find the smallest element and move (swap) it to the first position
- *Repeat*: find the second-smallest element and move it to the second position, and so on
Selection Sort

- Find the smallest element and move (swap) it to the first position
- *Repeat*: find the second-smallest element and move it to the second position, and so on
Selection Sort

- Find the smallest element and move (swap) it to the first position
- *Repeat:* find the second-smallest element and move it to the second position, and so on
Selection Sort

- Find the smallest element and move (swap) it to the first position.
- \textit{Repeat}: find the second-smallest element and move it to the second position, and so on.
- The \textcolor{gold}{gold} bars represent the sorted portion of the list.
Selection Sort

• Find the **smallest** element and move (swap) it to the **first** position

• *Repeat:* find the **second-smallest** element and move it to the **second** position, and so on

• The gold bars represent the sorted portion of the list.
Selection Sort

- Find the smallest element and move (swap) it to the first position
- *Repeat:* find the second-smallest element and move it to the second position, and so on
- The gold bars represent the sorted portion of the list.
Selection Sort

- Find the \textit{smallest} element and move (swap) it to the \textit{first} position
- \textit{Repeat}: find the \textit{second-smallest} element and move it to the \textit{second} position, and so on
- The gold bars represent the sorted portion of the list.
Selection Sort

- Find the smallest element and move (swap) it to the first position
- Repeat: find the second-smallest element and move it to the second position, and so on
- The gold bars represent the sorted portion of the list.
Selection Sort

• Find the **smallest** element and move (swap) it to the **first** position

• *Repeat:* find the **second-smallest** element and move it to the **second** position, and so on

• The gold bars represent the sorted portion of the list.
Selection Sort

• Find the smallest element and move (swap) it to the first position

• *Repeat*: find the second-smallest element and move it to the second position, and so on

• The *gold* bars represent the sorted portion of the list.
Selection Sort

- Find the smallest element and move (swap) it to the first position
- *Repeat:* find the second-smallest element and move it to the second position, and so on
- The gold bars represent the sorted portion of the list.

And now we're finally done!
Selection Sort

- Generalize: For each index \(i \) in the list \(\text{lst} \), we need to find the min item in \(\text{lst}[i:] \) so we can replace \(\text{lst}[i] \) with that item.

- In fact we need to find the position \(\text{min_index} \) of the item that is the minimum in \(\text{lst}[i:] \).

- **Reminder:** how to swap values of variables \(a \) and \(b \)?
 - in-line swapping: \(a, b = b, a \)

- How do we implement this algorithm?
def selection_sort(my_lst):
 """Selection sort of a given mutable sequence my_lst, sorts my_lst by mutating it. Uses selection sort."""

 # find size
 n = len(my_lst)

 # traverse through all elements
 for i in range(n):
 # find min element in the sublist from index i+1 to end
 min_index = get_min_index(my_lst, i)

 # swap min element with current element at i
 my_lst[i], my_lst[min_index] = my_lst[min_index], my_lst[i]

You will work on this helper function in Lab 10
def selection_sort(my_lst):
 """Selection sort of a given mutable sequence my_lst, sorts my_lst by mutating it. Uses selection sort."""

 # find size
 n = len(my_lst)

 # traverse through all elements
 for i in range(n):

 # find min element in the sublist from index i+1 to end
 min_index = get_min_index(my_lst, i)

 # swap min element with current element at i
 my_lst[i], my_lst[min_index] = my_lst[min_index], my_lst[i]

Even without an implementation, can we guess how many steps does this function need to take?
Selection Sort Analysis

- The helper function `get_min_index` must iterate through index i to n to find the min item
 - When $i = 0$ this is n steps
 - When $i = 1$ this is $n-1$ steps
 - When $i = 2$ this is $n-2$ steps
 - And so on, until $i = n-1$ this is 1 step
- Thus overall number of steps is sum of inner loop steps $$(n - 1) + (n - 2) + \cdots + 0 \leq n + (n - 1) + (n - 2) + \cdots + 1$$
- What is this sum? (You will see this in MATH 200 if you take it.)
Selection Sort Analysis: Visual

\[n + (n-1) + \ldots + 2 + 1 = \frac{n(n+1)}{2} \]
Selection Sort Analysis: Algebraic

\[S = n + (n - 1) + (n - 2) + \cdots + 3 + 2 + 1 \]
\[+ \quad S = 1 + 2 + 3 + \cdots + (n - 2) + (n - 1) + n \]

\[2S = (n + 1) + (n + 1) + \cdots + (n + 1) + (n + 1) + (n + 1) \]
\[2S = (n + 1) \cdot n \]
\[S = (n + 1) \cdot n \cdot 1/2 \]

- Total number of steps taken by selection sort is thus:
 - \(O(n(n + 1)/2) = O(n(n + 1)) = O(n^2 + n) = O(n^2) \)
How Fast Is Selection Sort?

- Selection sort takes approximately n^2 steps!
More Efficient Sorting:
Merge Sort
Towards an $O(n \log n)$ Algorithm

- There are other sorting algorithms that compare and rearrange elements in different ways, but are still $O(n^2)$ steps
 - Any algorithm that takes n steps to move each item n positions (in the worst case) will take at least $O(n^2)$ steps
 - To do better than n^2, we need to move an item in fewer than n steps
- We can sort in $O(n \log n)$ time if we are clever: *Merge sort algorithm* (Invented by John von Neumann in 1945)
Merge Sort: Basic Idea

- If we split the list in half, sorting the left and right half are smaller versions of the same problem.

Algorithm:

- **(Divide)** Recursively sort left and right half ($O(\log n)$)
- **(Unite)** Merge the sorted halves into a single sorted list ($O(n)$)

```python
def merge_sort(lst):
    m = n // 2
    left = lst[:m]
    right = lst[m:]

    if len(left) > 1:
        merge_sort(left)
    if len(right) > 1:
        merge_sort(right)

    i = j = 0
    while i < len(left) and j < len(right):
        if left[i] < right[j]:
            lst[i+j] = left[i]
            i += 1
        else:
            lst[i+j] = right[j]
            j += 1

    while i < len(left):
        lst[i+j] = left[i]
        i += 1

    while j < len(right):
        lst[i+j] = right[j]
        j += 1
```

```python
m = n // 2
left = lst[:m]
right = lst[m:]
```

```python
if len(left) > 1:
    merge_sort(left)
if len(right) > 1:
    merge_sort(right)
```

```python
i = j = 0
while i < len(left) and j < len(right):
    if left[i] < right[j]:
        lst[i+j] = left[i]
        i += 1
    else:
        lst[i+j] = right[j]
        j += 1
```

```python
while i < len(left):
    lst[i+j] = left[i]
    i += 1
while j < len(right):
    lst[i+j] = right[j]
    j += 1
```
Merging Sorted Lists

- **Problem.** Given two sorted lists \(a \) and \(b \), how quickly can we merge them into a single sorted list?
Merging Sorted Lists

Is $a[i] \leq b[j]$?

- Yes, $a[i]$ appended to c
- No, $b[j]$ appended to c
Is \(a[i] \leq b[j] \)?

- Yes, \(a[i] \) appended to \(c \)
- No, \(b[j] \) appended to \(c \)
Merging Sorted Lists

Is $a[i] \leq b[j]$?

- Yes, $a[i]$ appended to c
- No, $b[j]$ appended to c

```
Merging Sorted Lists

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>3</td>
</tr>
<tr>
<td>12</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>i</th>
<th>j</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>11</td>
<td>7</td>
</tr>
<tr>
<td>12</td>
<td>13</td>
</tr>
</tbody>
</table>

merged list $c$
```
Merging Sorted Lists

Is $a[i] \leq b[j]$?

- Yes, $a[i]$ appended to c
- No, $b[j]$ appended to c
Merging Sorted Lists

Is $a[i] \leq b[j]$?
- Yes, $a[i]$ appended to c
- No, $b[j]$ appended to c
Merging Sorted Lists

Is \(a[i] \leq b[j] \) ?

- Yes, \(a[i] \) appended to \(c \)
- No, \(b[j] \) appended to \(c \)
Merging Sorted Lists

- Walk through lists a, b, c maintaining current position of indices i, j, k
- Compare $a[i]$ and $b[j]$, whichever is smaller gets put in the spot of $c[k]$
- Merging two sorted lists into one is an $O(n)$ step algorithm!
- Can use this merge procedure to design our recursive merge sort algorithm!

```python
def merge(a, b):
    """Merges two sorted lists $a$ and $b$, and returns new merged list $c$""
    # initialize variables
    i, j, k = 0, 0, 0
    len_a, len_b = len(a), len(b)
    c = []
    # traverse and populate new list
    while i < len_a and j < len_b:
        if a[i] <= b[j]:
            c.append(a[i])
            i += 1
        else:
            c.append(b[j])
            j += 1
    # handle remaining values
    if i < len_a:
        c.extend(a[i:]
    elif j < len_b:
        c.extend(b[j:])
    return c
```
The Merge Sort Algorithm

- **Base case:** If list is empty or contains a single element: it is already sorted

- **Recursive case:**
 - Recursively sort left and right halves
 - Merge the sorted lists into a single list and return it

- **Question:**
 - Where is the **sorting** actually taking place?

```python
def merge_sort(lst):
    '''Given a list lst, returns a new list that is lst sorted in ascending order.'''
    n = len(lst)

    # base case
    if n == 0 or n == 1:
        return lst

    else:
        m = n//2 # middle

        # recurse on left & right half
        sort_lt = merge_sort(lst[:m])
        sort_rt = merge_sort(lst[m:])[n]

        # return merged list
        return merge(sort_lt, sort_rt)
```
Merge Sort Example
Merge Sort: Basic Idea

- If we split the list in half, sorting the left and right half are smaller versions of the same problem.

Algorithm:
- *(Divide)* Recursively sort left and right half ($O(\log n)$)
- *(Unite)* Merge the sorted halves into a single sorted list ($O(n)$)
Big Oh Comparisons

- Selection sort: $O(n^2)$
- Merge sort: $O(n \log n)$