CSI34 Lecture 32:
 Searching (\& Sorting)

Announcements \& Logistics

- HW 10 due Mon @ 10 pm
- Last HW on efficiency and Big Oh (Q5 updated with small fix)
- Lab 8 graded feedback will be returned soon
- Lab 10 will be released today
- Very short lab on searching and sorting (today's lecture)
- No prelab
- Individual lab but can discuss strategies with lab mate
- CSI 34 Scheduled Final: Friday, May I7, 9:30 AM
- Room: TCL 123 (Wege Auditorium) *

Do You Have Any Questions?

LastTime: Efficiency

- Measured efficiency as number of steps taken by algorithm on worstcase inputs of a given size
- Introduced Big-O notation: captures the rate at which the number of steps taken by the algorithm grows wrt size of input n, "as n gets large"

Today: Searching (and Sorting)

- Discuss recursive implementation of binary search
- Discuss some classic sorting algorithms:
- Selection sorting in $O\left(n^{2}\right)$ time
- A brief (high level) discussion of how we can improve it to $O(n \log n)$
- Overview of recursive merge sort algorithm

Searching in a Sequence

Search

- Search. Given an input sequence seq, search if a given item is in the sequence.
- For example, if a name is in a sequence of student names
- Input: a sequence of n items and a query item
- For now suppose this can be in any order
- Output: True if query item is in sequence, else False
- Can use in operator to do this (calls \qquad contains \qquad
- But without knowing how it works, can't analyze efficiency
- Let's figure out a direct way to solve this problem

Searching in a Sequence

- First algorithm: iterate through the items in sequence and compare each item to query

```
def linear_search(item, seq):
```

 for elem in seq:
 if elem == item:
return True
return False

Might return early if item is first elem in seq, but we are interested in the worst case analysis; worst case is if item is not in seq at all

Searching in a Sequence

- In the worst case, we have to walk through the entire sequence
- Overall, the number of steps is linear in n : we write $O(n)$ in Big Oh def linear_search(item, seq): for elem in seq:

if elem $==$ item:
return True

Loop runs n items
in worst case

One equality check per iteration: assume comparing elem == item is one step

Searching in an Array

- Can we do better?
- Not if the elements are in arbitrary order
- What if the sequence is sorted?
- Can we utilize this somehow and search more efficiently?

How do we search for an item (say 10) in a sorted array?

Let's Play a Game

- I'm thinking of a number between 0 and $100 \ldots$
- If you guess a number, l'll tell you either:
- You've guessed my number!
- My number is larger than your guess
- My number is smaller than your guess
- What is your guessing strategy?
- What if I picked a number between 0 and 1 million?

Binary Search

- The search algorithm we just discussed to guess a number can be used search in a sorted list. It's called binary search
- It can be much more efficient than a linear search
- Takes $\approx \log n$ lookups if we can index into sequence efficiently
- Which data structure supports fast access/indexing?
- Accessing an item at index i in an array requires constant time
- Accessing an item at index i in a LinkedList can require traversing the whole list (even if it is sorted!): linear time
- To get a more efficient search algorithm, it is not only important to use the right algorithm, we need to use the right data structure as well!

Binary Search

- Base cases? When are we done?
- If list is too small (or empty) to continue searching, return False
- If item we're searching for is the middle element, return True

Binary Search

- Recursive case:
- Recurse on left side if item is smaller than middle
- Recurse on right side if item is larger than middle

If item < a_Ist[mid], then need to search in a_lst[:mid]

Binary Search

- Recursive case:
- Recurse on left side if item is smaller than middle
- Recurse on right side if item is larger than middle


```
def binary_search(seq, item):
    """'Assume seq is sorted. If item is
    in seq, return True; else return False.""""
    n = len(seq)
    # base case 1
    if n == 0:
        return False
    mid = n // 2
    mid_elem = seq[mid]
    # base case 2
    if item == mid_elem:
        return True
    # recurse on left
    elif item < mid_elem:
        left = seq[:mid]
        return binary_search(left, item)
    # recurse on right
    else:
        right = seq[mid+1:]
        return binary_search(right, item)
```


Binary Search: Improved

```
def binary_search_helper(seq, item, start, end):
    '''Recursive helper function used in binary search'''
    # base case 1
    if start > end:
        return False
    mid = (start + end) // 2
    mid_elem = seq[mid]
    if item == mid_elem:
        return True
    # recurse on left
    elif item < mid_elem:
        return binary_search_helper(seq, item, start, mid-1)
    # recurse on right
    else:
        return binary_search_helper(seq, item, mid+1, end)
def binary_search_improved(seq, item):
    return binary_search_helper(seq, item, 0, len(seq)-1)
```


1

2

四

More on Big Oh

Big-O Notation

- Tells you how fast an algorithm is / the run-time of algorithms
- But not in seconds!
- Tells you how fast the algorithm grows in number of operations

O(log n) "Big ○" Number of Operations

Understanding Big-O

- Notation: n often denotes the number of elements (size)
- Constant time or $O(1)$: when an operation does not depend on the number of elements, e.g.
- Addition/subtraction/multiplication of two values, or defining a variable etc are all constant time
- Linear time or $O(n)$: when an operation requires time proportional to the number of elements, e.g.:
for item in seq: <do something>
- Quadratic time or $O\left(n^{2}\right)$: nested loops are often quadratic, e.g.,

```
for i in range(n):
    for j in range(n):
        <do something>
```


Big-O: Common Functions

- Notation: n often denotes the number of elements (size)
- Our goal: understand efficiency of some algorithms at a high level

Sorting

Sorting

- Problem: Given a sequence of unordered elements, we need to sort the elements in ascending order.
- There are many ways to solve this problem!
- Built-in sorting functions/methods in Python
- sorted () : function that returns a new sorted list
- sort (): list method that mutates and sorts the list
- Today: how do we design our own sorting algorithm?
- Question: What is the best (most efficient) way to sort n items?
- We will use Big-O to find out!

Selection Sort

- A possible approach to sorting elements in a list/array:
- Find the smallest element and move (swap) it to the first position
- Repeat: find the second-smallest element and move it to the second position, and so on

Selection Sort

- Find the smallest element and move (swap) it to the first position
- Repeat: find the second-smallest element and move it to the second position, and so on

Selection Sort

- Find the smallest element and move (swap) it to the first position
- Repeat: find the second-smallest element and move it to the second position, and so on

Selection Sort

- Find the smallest element and move (swap) it to the first position
- Repeat: find the second-smallest element and move it to the second position, and so on

Selection Sort

- Find the smallest element and move (swap) it to the first position
- Repeat: find the second-smallest element and move it to the second position, and so on
- The gold bars represent the sorted portion of the list.

Selection Sort

- Find the smallest element and move (swap) it to the first position
- Repeat: find the second-smallest element and move it to the second position, and so on
- The gold bars represent the sorted portion of the list.

Selection Sort

- Find the smallest element and move (swap) it to the first position
- Repeat: find the second-smallest element and move it to the second position, and so on
- The gold bars represent the sorted portion of the list.

Selection Sort

- Find the smallest element and move (swap) it to the first position
- Repeat: find the second-smallest element and move it to the second position, and so on
- The gold bars represent the sorted portion of the list.

Selection Sort

- Find the smallest element and move (swap) it to the first position
- Repeat: find the second-smallest element and move it to the second position, and so on
- The gold bars represent the sorted portion of the list.

Selection Sort

- Find the smallest element and move (swap) it to the first position
- Repeat: find the second-smallest element and move it to the second position, and so on
- The gold bars represent the sorted portion of the list.

Selection Sort

- Find the smallest element and move (swap) it to the first position
- Repeat: find the second-smallest element and move it to the second position, and so on
- The gold bars represent the sorted portion of the list.

Selection Sort

- Find the smallest element and move (swap) it to the first position
- Repeat: find the second-smallest element and move it to the second position, and so on
- The gold bars represent the sorted portion of the list.

And now we're finally done!

Selection Sort

- Generalize: For each index i in the list lst, we need to find the min item in lst [i:] so we can replace lst [i] with that item
- In fact we need to find the position min_index of the item that is the minimum in lst[i:]
- Reminder: how to swap values of variables a and b ?
- in-line swapping: $a, b=b, a$
- How do we implement this algorithm?

Selection Sort

```
def selection_sort(my_lst):
    """'Selection sort of a given mutable sequence my_lst,
    sorts my_lst by mutating it. Uses selection sort."""
```

 \# find size
 n = len(my_lst)
 You will work on this helper function in Lab 10
\# traverse through all elements
for i in range(n):
\# find min element in the sublist from index i+1 to end
min_index = get_min_index(my_lst, i)
\# swap min element with current element at i
my_lst[i], my_lst[min_index] = my_lst[min_index], my_lst[i]

Selection Sort

```
def selection_sort(my_lst):
    """'Selection sort of a given mutable sequence my_lst,
    sorts my_lst by mutating it. Uses selection sort."""
    # find size
    n = len(my_lst)
                                    Even without an implementation,
    can we guess how many steps
    does this function need to take?
    # traverse through all elements
    for i in range(n):
            # find min element in the sublist from index i+1 to end
            min_index = get_min_index(my_lst, i)
            # swap min element with current element at i
            my_lst[i], my_lst[min_index] = my_lst[min_index], my_lst[i]
```


Selection Sort Analysis

- The helper function get_min_index must iterate through index i to n to find the min item
- When $\mathbf{i}=0$ this is n steps
- When $\mathrm{i}=1$ this is $\mathrm{n}-1$ steps
- When $\mathbf{i}=2$ this is $\mathrm{n}-2$ steps
- And so on, until $\mathbf{i}=\mathrm{n}-1$ this is $\mathbf{1}$ step
- Thus overall number of steps is sum of inner loop steps
$(n-1)+(n-2)+\cdots+0 \leq n+(n-1)+(n-2)+\cdots+1$
- What is this sum? (You will see this in MATH 200 if you take it.)

Selection Sort Analysis: Visual

$$
\mathrm{n}+(\mathrm{n}-1)+\ldots+2+1=\mathrm{n}(\mathrm{n}+1) / 2
$$

Selection Sort Analysis: Algebraic

$$
\begin{aligned}
S & =n+(n-1)+(n-2)+\cdots+2+1 \\
+ & =1+2+\cdots+(n-2)+(n-1)+n
\end{aligned}
$$

$$
\begin{aligned}
& 2 S=(n+1)+(n+1)+\cdots+(n+1)+(n+1)+(n+1) \\
& 2 S=(n+1) \cdot n \\
& S=(n+1) \cdot n \cdot 1 / 2
\end{aligned}
$$

- Total number of steps taken by selection sort is thus:

$$
\text { - } O(n(n+1) / 2)=O(n(n+1))=O\left(n^{2}+n\right)=O\left(n^{2}\right)
$$

How Fast Is Selection Sort?

- Selection sort takes approximately n^{2} steps!

Number of Elements

More Efficient Sorting:
Merge Sort

Towards an $O(n \log n)$ Algorithm

- There are other sorting algorithms that compare and rearrange elements in different ways, but are still $O\left(n^{2}\right)$ steps
- Any algorithm that takes n steps to move each item n positions (in the worst case) will take at least $O\left(n^{2}\right)$ steps
- To do better than n^{2}, we need to move an item in fewer than n steps
- We can sort in $O(n \log n)$ time if we are clever: Merge sort algorithm (Invented by John von Neumann in 1945)

Merge Sort: Basic Idea

- If we split the list in half, sorting the left and right half are smaller versions of the same problem
- Algorithm:
- (Divide) Recursively sort left and right half $(O(\log n))$
- (Unite) Merge the sorted halves into a single sorted list ($O(n)$)

Merging Sorted Lists

- Problem. Given two sorted lists \mathbf{a} and \mathbf{b}, how quickly can we merge them into a single sorted list?

merged list c

Merging Sorted Lists

Is $a[i]<=b[j]$?

- Yes, a [i] appended to c
- No, b[j] appended to c

Merging Sorted Lists

Is $a[i]<=b[j]$?

- Yes, a [i] appended to c
- No, b[j] appended to c

Merging Sorted Lists

Is $a[i]<=b[j]$?

- Yes, a [i] appended to c
- No, b[j] appended to c

Merging Sorted Lists

Is $a[i]<=b[j]$?

- Yes, a [i] appended to c
- No, b[j] appended to c

Merging Sorted Lists

Is $a[i]<=b[j]$?

- Yes, a [i] appended to c
- No, b[j] appended to c

Merging Sorted Lists

Is $\mathrm{a}[\mathrm{i}]<=\mathrm{b}[\mathrm{j}]$?

- Yes, a [i] appended to c
- No, b[j] appended to c

Merging Sorted Lists

- Walk through lists a, b, c maintaining current position of indices i, j, k
- Compare $a[i]$ and $b[j]$, whichever is smaller gets put in the spot of $c[k]$
- Merging two sorted lists into one is an $O(n)$ step algorithm!
- Can use this merge procedure to design our recursive merge sort algorithm!

```
def merge(a, b):
    """Merges two sorted lists a and b,
    and returns new merged list c""""
    # initialize variables
    i, j, k = 0, 0, 0
    len_a, len_b = len(a), len(b)
    c = []
    # traverse and populate new list
    while i < len_a and j < len_b:
    if a[i] <= b[j]:
        c.append(a[i])
        i += 1
    else:
        c.append(b[j])
        j += 1
    # handle remaining values
    if i < len_a:
        c.extend(a[i:])
    elif j < len_b:
        c.extend(b[j:])
```


Merge Sort Algorithm

- Base case: If list is empty or contains a single element: it is already sorted
- Recursive case:
- Recursively sort left and right halves
- Merge the sorted lists into a single list and return it
- Question:
- Where is the sorting actually taking place?

```
def merge_sort(lst):
    """'Given a list lst, returns
    a new list that is lst sorted
    in ascending order."""
    n = len(lst)
    # base case
    if n == 0 or n == 1:
        return lst
    else:
        m = n//2 # middle
        # recurse on left & right half
        sort_lt = merge_sort(lst[:m])
        sort_rt = merge_sort(lst[m:])
    # return merged list
    return merge(sort_lt, sort_rt)
```

Merge Sort Example

Merge Sort Example

Merge Sort: Basic Idea

- If we split the list in half, sorting the left and right half are smaller versions of the same problem
- Algorithm:
- (Divide) Recursively sort left and right half $(O(\log n))$
- (Unite) Merge the sorted halves into a single sorted list ($O(n)$)
$O(\log n)$

Big Oh Comparisons

- Selection sort: $O\left(n^{2}\right)$
- Merge sort: $O(n \log n)$

