CS134 Lecture 32:
Searching (& Sorting)
Announcements & Logistics

• **HW 10** due Mon @ 10 pm
 • Last HW on efficiency and Big Oh (Q5 updated with small fix)
• **Lab 8** graded feedback will be returned soon
• **Lab 10** will be released today
 • Very short lab on searching and sorting (today's lecture)
 • No prelab
 • Individual lab but can discuss strategies with lab mate
• **CS134 Scheduled Final:** Friday, May 17, 9:30 AM
 • Room: **TCL 123 (Wege Auditorium)** *

Do You Have Any Questions?
Last Time: Efficiency

- Measured efficiency as number of steps taken by algorithm on worst-case inputs of a given size.
- Introduced Big-O notation: captures the rate at which the number of steps taken by the algorithm grows with respect to the size of input n, "as n gets large".
Today: Searching (and Sorting)

• Discuss recursive implementation of binary search
• Discuss some classic sorting algorithms:
 • Selection sorting in $O(n^2)$ time
 • A brief (high level) discussion of how we can improve it to $O(n \log n)$
 • Overview of recursive merge sort algorithm
Searching in a Sequence
Search

- **Search.** Given an input sequence `seq`, search if a given `item` is in the sequence.
 - For example, if a name is in a sequence of student names
- **Input:** a sequence of `n` items and a query item
 - For now suppose this can be in *any order*
- **Output:** True if query item is in sequence, else False
- Can use `in` operator to do this (calls `__contains__`)
 - But without knowing how it works, can't analyze efficiency
- Let's figure out a direct way to solve this problem
Searching in a Sequence

- First algorithm: iterate through the items in sequence and compare each item to query

```python
def linear_search(item, seq):
    for elem in seq:
        if elem == item:
            return True
    return False
```

Might return early if item is first elem in seq, but we are interested in the worst case analysis; worst case is if item is not in seq at all.
Searching in a Sequence

• In the worst case, we have to walk through the entire sequence

• Overall, the number of steps is linear in n: we write $O(n)$ in Big Oh

```python
def linear_search(item, seq):
    for elem in seq:
        if elem == item:
            return True
    return False
```

Loop runs n items in worst case

One equality check per iteration: assume comparing `elem == item` is one step

<table>
<thead>
<tr>
<th>8</th>
<th>5</th>
<th>3</th>
<th>11</th>
<th>...</th>
<th>45</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>...</td>
<td>n-1</td>
</tr>
</tbody>
</table>
Searching in an Array

• Can we do better?
 • Not if the elements are in arbitrary order
• What if the sequence is sorted?
 • Can we utilize this somehow and search more efficiently?

How do we search for an item (say 10) in a sorted array?
Let’s Play a Game

• I’m thinking of a number between 0 and 100…
• If you guess a number, I’ll tell you either:
 • You’ve guessed my number!
 • My number is larger than your guess
 • My number is smaller than your guess
• What is your guessing strategy?

• What if I picked a number between 0 and 1 million?
The search algorithm we just discussed to guess a number can be used search in a sorted list. It's called binary search.

It can be much more efficient than a linear search:

- Takes $\approx \log n$ lookups if we can index into sequence efficiently.

Which data structure supports fast access/indexing?

- Accessing an item at index i in an array requires constant time.
- Accessing an item at index i in a LinkedList can require traversing the whole list (even if it is sorted!): linear time.

To get a more efficient search algorithm, it is not only important to use the right algorithm, we need to use the right data structure as well!
Binary Search

• Base cases? When are we done?
 • If list is too small (or empty) to continue searching, return False
 • If item we’re searching for is the middle element, return True

\[
\text{mid} = \frac{n}{2}
\]
Binary Search

- Recursive case:
 - Recurse on left side if item is smaller than middle
 - Recurse on right side if item is larger than middle

If item < a_lst[mid], then need to search in a_lst[:mid]

mid = n//2
Binary Search

- Recursive case:
 - Recurse on left side if item is smaller than middle
 - Recurse on right side if item is larger than middle

If item > a_lst[mid], then need to search in a_lst[mid+1:]
def binary_search(seq, item):

 """Assume seq is sorted. If item is in seq, return True; else return False."""

 n = len(seq)

 # base case 1
 if n == 0:
 return False

 mid = n // 2
 mid_elem = seq[mid]

 # base case 2
 if item == mid_elem:
 return True

 # recurse on left
 elif item < mid_elem:
 left = seq[:mid]
 return binary_search(left, item)

 # recurse on right
 else:
 right = seq[mid+1:]
 return binary_search(right, item)

Technically, there is one small problem with our implementation. List splicing is actually O(n)!
def binary_search_helper(seq, item, start, end):
 '''Recursive helper function used in binary search'''

 # base case 1
 if start > end:
 return False

 mid = (start + end) // 2
 mid_elem = seq[mid]

 if item == mid_elem:
 return True

 # recurse on left
 elif item < mid_elem:
 return binary_search_helper(seq, item, start, mid-1)

 # recurse on right
 else:
 return binary_search_helper(seq, item, mid+1, end)

def binary_search_improved(seq, item):
 return binary_search_helper(seq, item, 0, len(seq)-1)
BINÄRY SEARCH

1

2

3

4
More on Big Oh
Big-O Notation

• Tells you how fast an algorithm is / the run-time of algorithms
 • But not in seconds!
• Tells you how fast the algorithm grows in number of operations

\[O(\log n) \]

"Big O" Number of Operations
Understanding Big-O

- Notation: n often denotes the number of elements (size)
- **Constant time** or $O(1)$: when an operation does not depend on the number of elements, e.g.
 - Addition/subtraction/multiplication of two values, or defining a variable etc are all constant time
- **Linear time** or $O(n)$: when an operation requires time proportional to the number of elements, e.g.:
  ```python
  for item in seq:
      <do something>
  ```
- **Quadratic time** or $O(n^2)$: nested loops are often quadratic, e.g.,
  ```python
  for i in range(n):
      for j in range(n):
          <do something>
  ```
Notation: \(n \) often denotes the number of elements (size)

Our goal: understand efficiency of some algorithms at a high level.

Big-O: Common Functions

- \(O(1) \)
- \(O(n) \)
- \(O(n^2) \)
- \(O(\log n) \)
- \(O(1) \)
Sorting
Problem: Given a sequence of unordered elements, we need to sort the elements in ascending order.

There are many ways to solve this problem!

Built-in sorting functions/methods in Python

- `sorted()`: function that returns a new sorted list
- `sort()`: list method that mutates and sorts the list

Today: how do we design our own sorting algorithm?

Question: What is the best (most efficient) way to sort n items?

We will use Big-O to find out!
Selection Sort

- A possible approach to sorting elements in a list/array:
 - Find the smallest element and move (swap) it to the first position
 - *Repeat:* find the second-smallest element and move it to the second position, and so on
Selection Sort

• Find the **smallest** element and move (swap) it to the **first** position

• *Repeat:* find the second-smallest element and move it to the second position, and so on
Selection Sort

- Find the smallest element and move (swap) it to the first position
- Repeat: find the second-smallest element and move it to the second position, and so on
Selection Sort

- Find the smallest element and move (swap) it to the first position.
- Repeat: find the second-smallest element and move it to the second position, and so on.
Selection Sort

- Find the smallest element and move (swap) it to the first position.
- \textit{Repeat}: find the second-smallest element and move it to the second position, and so on.
- The \textcolor{orange}{gold} bars represent the sorted portion of the list.
Selection Sort

- Find the *smallest* element and move (swap) it to the first position
- *Repeat*: find the *second-smallest* element and move it to the second position, and so on
- The gold bars represent the sorted portion of the list.
Selection Sort

- Find the smallest element and move (swap) it to the first position
- *Repeat:* find the second-smallest element and move it to the second position, and so on
- The **gold** bars represent the sorted portion of the list.
Selection Sort

- Find the *smallest* element and move (swap) it to the *first* position
- *Repeat:* find the *second-smallest* element and move it to the *second* position, and so on
- The gold bars represent the sorted portion of the list.
Selection Sort

• Find the smallest element and move (swap) it to the first position

• *Repeat*: find the second-smallest element and move it to the second position, and so on

• The gold bars represent the sorted portion of the list.
Selection Sort

• Find the **smallest** element and move (swap) it to the **first** position

• **Repeat:** find the **second-smallest** element and move it to the **second** position, and so on

• The gold bars represent the sorted portion of the list.
Selection Sort

- Find the smallest element and move (swap) it to the first position
- *Repeat*: find the second-smallest element and move it to the second position, and so on
- The **gold** bars represent the sorted portion of the list.
Selection Sort

• Find the smallest element and move (swap) it to the first position

• \textit{Repeat}: find the second-smallest element and move it to the second position, and so on

• The gold bars represent the sorted portion of the list.

And now we're finally done!
Selection Sort

• Generalize: For each index \(i \) in the list \(\text{lst} \), we need to find the \text{min} item in \(\text{lst}[i:] \) so we can replace \(\text{lst}[i] \) with that item.

• In fact we need to find the position \text{min_index} of the item that is the minimum in \(\text{lst}[i:] \).

• Reminder: how to swap values of variables \(a \) and \(b \)?
 • in-line swapping: \(a, b = b, a \)

• How do we implement this algorithm?
def selection_sort(my_lst):
 """Selection sort of a given mutable sequence my_lst, sorts my_lst by mutating it. Uses selection sort."""

 # find size
 n = len(my_lst)

 # traverse through all elements
 for i in range(n):

 # find min element in the sublist from index i+1 to end
 min_index = get_min_index(my_lst, i)

 # swap min element with current element at i
 my_lst[i], my_lst[min_index] = my_lst[min_index], my_lst[i]

You will work on this helper function in Lab 10
def selection_sort(my_lst):
 """Selection sort of a given mutable sequence my_lst, sorts my_lst by mutating it. Uses selection sort."""

 # find size
 n = len(my_lst)

 # traverse through all elements
 for i in range(n):
 # find min element in the sublist from index i+1 to end
 min_index = get_min_index(my_lst, i)

 # swap min element with current element at i
 my_lst[i], my_lst[min_index] = my_lst[min_index], my_lst[i]

Even without an implementation, can we guess how many steps does this function need to take?
Selection Sort Analysis

- The helper function `get_min_index` must iterate through index `i` to `n` to find the min item

 - When `i = 0` this is `n` steps
 - When `i = 1` this is `n-1` steps
 - When `i = 2` this is `n-2` steps
 - And so on, until `i = n-1` this is 1 step

- Thus overall number of steps is sum of inner loop steps

 \[(n - 1) + (n - 2) + \cdots + 0 \leq n + (n - 1) + (n - 2) + \cdots + 1\]

- What is this sum? (You will see this in MATH 200 if you take it.)
Selection Sort Analysis: Visual

\[n + (n-1) + \ldots + 2 + 1 = \frac{n(n+1)}{2} \]
Selection Sort Analysis: Algebraic

\[S = n + (n - 1) + (n - 2) + \cdots + 2 + 1 \]

\[+ \quad S = 1 + 2 + \cdots + (n - 2) + (n - 1) + n \]

\[2S = (n + 1) + (n + 1) + \cdots + (n + 1) + (n + 1) + (n + 1) \]

\[2S = (n + 1) \cdot n \]

\[S = (n + 1) \cdot n \cdot 1/2 \]

- Total number of steps taken by selection sort is thus:
 \[O(n(n + 1)/2) = O(n(n + 1)) = O(n^2 + n) = O(n^2) \]
How Fast Is Selection Sort?

• Selection sort takes approximately n^2 steps!
More Efficient Sorting:

Merge Sort
Towards an $O(n \log n)$ Algorithm

- There are other sorting algorithms that compare and rearrange elements in different ways, but are still $O(n^2)$ steps

 - Any algorithm that takes n steps to move each item n positions (in the worst case) will take at least $O(n^2)$ steps

 - To do better than n^2, we need to move an item in fewer than n steps

- We can sort in $O(n \log n)$ time if we are clever: **Merge sort algorithm**
 (Invented by John von Neumann in 1945)
Merge Sort: Basic Idea

- If we split the list in half, sorting the left and right half are smaller versions of the same problem

- **Algorithm:**
 - *(Divide)* Recursively sort left and right half \((O(\log n))\)
 - *(Unite)* Merge the sorted halves into a single sorted list \((O(n))\)
Merging Sorted Lists

• **Problem.** Given two sorted lists \(a \) and \(b \), how quickly can we merge them into a single sorted list?
Merging Sorted Lists

Is $a[i] \leq b[j]$?

- Yes, $a[i]$ appended to c
- No, $b[j]$ appended to c
Merging Sorted Lists

Is $a[i] \leq b[j]$?
- Yes, $a[i]$ appended to c
- No, $b[j]$ appended to c
Merging Sorted Lists

Is $a[i] \leq b[j]$?

- Yes, $a[i]$ appended to c
- No, $b[j]$ appended to c
Merging Sorted Lists

Is $a[i] \leq b[j]$?

- Yes, $a[i]$ appended to c
- No, $b[j]$ appended to c
Merging Sorted Lists

Is $a[i] \leq b[j]$?

- Yes, $a[i]$ appended to c
- No, $b[j]$ appended to c

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>5</td>
</tr>
<tr>
<td>11</td>
<td>7</td>
</tr>
<tr>
<td>12</td>
<td>13</td>
</tr>
</tbody>
</table>

merged list c
Merging Sorted Lists

Is $a[i] \leq b[j]$?

- Yes, $a[i]$ appended to c
- No, $b[j]$ appended to c

- Yes, $a[2]$ appended to c
- No, $b[3]$ appended to c
Merging Sorted Lists

- Walk through lists a, b, c maintaining current position of indices i, j, k
- Compare $a[i]$ and $b[j]$, whichever is smaller gets put in the spot of $c[k]$
- Merging two sorted lists into one is an $O(n)$ step algorithm!
- Can use this merge procedure to design our recursive merge sort algorithm!

```python
def merge(a, b):
    """Merges two sorted lists a and b, and returns new merged list c""
    # initialize variables
    i, j, k = 0, 0, 0
    len_a, len_b = len(a), len(b)
    c = []
    # traverse and populate new list
    while i < len_a and j < len_b:
        if a[i] <= b[j]:
            c.append(a[i])
            i += 1
        else:
            c.append(b[j])
            j += 1
    # handle remaining values
    if i < len_a:
        c.extend(a[i:])
    elif j < len_b:
        c.extend(b[j:])
    return c
```
Merge Sort Algorithm

- **Base case:** If list is empty or contains a single element: it is already sorted
- **Recursive case:**
 - Recursively sort left and right halves
 - Merge the sorted lists into a single list and return it
- **Question:**
 - Where is the *sorting* actually taking place?

```python
def merge_sort(lst):
    '''Given a list lst, returns a new list that is lst sorted in ascending order.'''
    n = len(lst)

    # base case
    if n == 0 or n == 1:
        return lst
    else:
        m = n//2  # middle

        # recurse on left & right half
        sort_lt = merge_sort(lst[:m])
        sort_rt = merge_sort(lst[m:]):

        # return merged list
        return merge(sort_lt, sort_rt)
```
Merge Sort Example
Merge Sort Example

12 2 9 4 11

2 12 4 9 11

3 1 7

14 5 13

5 13 14

2 4 9 11 12

1 3 5 7 13 14

1 2 3 4 5

7 9 11 12 13 14
Merge Sort: Basic Idea

• If we split the list in half, sorting the left and right half are smaller versions of the same problem

• Algorithm:
 • (Divide) Recursively sort left and right half ($O(\log n)$)
 • (Unite) Merge the sorted halves into a single sorted list ($O(n)$)

\[
\begin{align*}
O(\log n) & \quad n = \text{len(lst)} \\
0 & \quad m = \text{n//2} \\
\text{lstd} & \quad 12 \quad 2 \quad 9 \quad 4 \quad 11 \quad 3 \quad 1 \quad 7 \quad 14 \quad 5 \quad 13
\end{align*}
\]
Big Oh Comparisons

- Selection sort: \(O(n^2) \)
- Merge sort: \(O(n \log n) \)