CS134 Lecture 30;

beclal Methoc

s & Linkec

| Ists

Announcements & Logistics
HW 9 due tonight @ 10 pm on GLOW

Short: 6 questions for practice on OOP concepts
Lab 9 Boggle: two-week lab now In progress
Part 2 due May |/2 (handout posted)
Part 2 also has a prelab!
Asks you to draw out the Boggle game logic

Draw It on a sheet of paper and bring the diagram to lab

Vake sure 1t i1s legible and clear!

Do You Have Any Questions?

L ast [Ime

Learn how to implement several special methods which let us utilize
built-in operators in Python for user-defined types

Discussed general concept of a linked list

Recursively defined data structure

Elements stored in objects that also store the "next object’s" location

Jloday's Plan

* Write our own implementation of LinkedList

* Implement functionality (wrrte code) for special methods:

« _1nit_
« Sstr__
. len

+ getitem__

« __contailns_

» Discuss at high level (wrthout code) other functionality we may want

But First...

Let's get a better inturtion for how a linked list behaves. ..

Volunteers!

Our Own Class L1nkedL1st

- Attributes:

 value, _rest

- Recursive class:

+ _rest points to another instance of the same class

 Any Instance of a class that Is created by using another instance of
the class Is a recursive class

_value _value _value

- El > [>

_rest _rest _rest

Initializing Our LinkedList

class LinkedList:
"""Implements our own recursive list data
structure"""

def init_ (self, value=None, rest=None):
self._value value

self._rest = rest rest is another

Instance of our
| inkedList class

How do we create an

empty list?

_value _value _value

> > >

_rest _rest _rest

Recursive Implementation: STr

- Let's think about how to implement a string representation of our list

« What Is the base case!

+ What If our list has only one item
- Just return st r (value) (so if value is int, this return str(5) eg.
- How do we check If list only has one ritem in Iit?

- _restisNone

Recursive Implementation: STr

- Let's think about how to implement a string representation of our list
- What is the base case!
- What if our list has only one item

- Just return st r (value) (so if value is int, this return str(5) eg.

+ How do we check If list only has one ritem in It?

Recursive Implementation: STr___

str() function calls __str_ () method

def __str__(self):
—. Notice the use of

if self. rest is None: - __
1S and not ==
return str(self._value)

Python:"1s None"vs " == None™
PEP 8 (Style Guide for Python Code) says:
"Comparisons to singletons like None should always be done

with 'is' or 'is not', never the equality operators.”

http://www.python.org/dev/peps/pep-0008/

Recursive Implementation: ST

str() function calls __str_ () method

def __str__(self): This is recursion since Str calls

i1f self. _rest is None: __Str__. The base case is

return str(self._value) when self._restisNone

else:
return str(self. value) + ', ' + str(self._rest)

~value ~value ~value

_rest _rest _rest

Recursive Implementation: STr

- What if we want to enclose the elements in square brackets []?

- Idea: Use a helper method that does the same thingas __str__ ()

on the previous slide, and then enclose its returnin " []

def get string(self):

''"'"Helper method for str of contents'''
if self._rest 1s None:

return str(self._value)
else:

return str(self. value) + ', + self. _rest._get _string()

def str_ (self):
return "[" + self. get string() + "]"

Empty Lists?

- What happens when we call print on an empty LinkedList!

- Do we want a different behavior! How do we change our code!?

def get string(self):

handle empty list
1f self._value 1s None and self. _rest 1s None:
return '' # empty list notation

elif self. _rest 1s None: # value 1s not None
return str(self._value)

else: # neither 1s None
return str(self. _value) + ', ' + self. _rest._ get string()

def str_ (self):
return "[" + self. get string() + "]"

e len_ (self)

Special Method:

- Called when we use the built-in function len () in Python on an
object 0bj of the class: len(obj)

- We can call len () function on any object whose class has the

Len__ () special method implemented

- We want to implement this special method so it tells us the number of

elements In our linked list, e.g. 3 elements In the list below

_value

o

_rest

_value

o

_rest

_value

o

_rest

Implementing Recursively

+ Asour LinkedL1st class is defined recursively, let's implement the

Llen__ method recursively

+ Method will return an int (num of elements)

- What is the base case(s)!

- What about the recursive case!

- Count self (so, +1),and then call Len() on the rest of the list

_value _value _value

- El > [>

_rest _rest _rest

Recursive Implementation: Len

len() function calls _ len_ () method

def len (self):
base case: handle empty list first
1f self._value 1is None and self. _rest is None:

return 0

list of length 1
elif self. _rest 1is None:
return 1

#recursive case (larger than 1)

else:
same as return 1 + self. rest. len_ ()

return 1 + len(self._rest)

~value ~value ~value

> > >

_rest _rest _rest

Other Special Methods

1n Operator: __contains__

__contains__(self, val)
- When we say 1T elem 1n seq in Python:

* Python calls the __contains__ special method on seq

» Thatis, seq.__contains__(elem)

+ If we want the 1N operator to work for the objects of our class, we can do so by

implementing the __contailns__ special method

« Basic idea:

- "Walk™ along list checking values
- It we find the value we're looking for, return True
- If we make 1t to the end of the list without finding It, return False

- We'll do this recursively!

1n Operator: __contains__

« __contains__(self, val)
- When we say 1T elem 1n seq in Python:

* Python calls the __contains__ special method on seq

» Thatis, seq.__contains__(elem)

+ If we want the 1N operator to work for the objects of our class, we can do so by

implementing the __contailns__ special method

1n operator calls _ _contains__ () method
def _ contains__ (self, val):
1f self._value == val:
return True
elif self. _rest is None:
return False

else:
same as calling self.__contains__(val)

return val in self._rest

+ Operator: __add

__add__(self, other)

- When using lists, we can concatenate two lists together into one

st using the + operator (this always returns a new list)

» To support the + operator in our L1nkedL1st class, we need to

implement __add__ special method

Make the end of our first list point to the beginning of the other
Basic idea:
- Walk along first list until we reach the end
Set _rest to be the beginning of second list

More recursion!

+ Operator: __add

__add__(self, other)

- When using lists, we can concatenate two lists together into one

st using the + operator (this always returns a new list)

» To support the + operator in our L1nkedL1st class, we need to

implement __add__ special method

- Make the end of our first list point to the beginning of the other

+ operator calls __add__ () method
+ operator returns a new instance of LinkedList

def add (self, other): Note: Technically this does
other is another instance of LinkedList not return a new list. This is
1f we are the last item in the list more like extend. Let’s not

if self. _rest 1is None:
set _rest to other
self._rest = other
else:

else, recurse until we reach the last item ngyf'Sthe hgad or
self. rest. add_ (other) beginning of the list. Note

return self that it didn't change!

worry about this for now!

Useful list methods:
.append(), .prepend(), .insert()

Useful List Method: append

e append(self, val)

- When using lists, we can add an element to the end of an existing list
by calling append (note that append mutates our list)

« Basic idea:

« Walk to end of list

» Create anew L1nkedLi1st(val) and add it to the end
_value

rest

_value val ue val ue

rest

Useful List Method: append

e append(self, val)

- When using lists, we can add an element to the end of an existing list
by calling append (note that append mutates our list)

Basic idea:

- Walk to end of list

+ Create anew LinkedL1st(val) and add it to the end

_value _value _value _value

— N [l - 7 -

_rest _rest _rest _rest

Useful List Method: append

e append(self, val)

- When using lists, we can add an element to the end of an existing list
by calling append (note that append mutates our list)

» This entails setting the _rest attribute of the last element to be a

new LinkedList with the given value.

def append(self, val):

1f am at the end of the list

1f self. _rest is None:
add a new LinkedList to the end
self. rest = LinkedList(val)

else:
else recurse until we find the end
self._rest.append(val)

Useful List Method: prepend

e prepend(self, val)

- We may also want to add elements to the beginning of our list
(this will mutate our list, similar to append)

»+ The prepend operation is really efficient, we don't need to walk

through the list at all — just do some variable reassignments.

def prepend(self, val):
old val = self. value
old _rest = self. _rest
self. value = val
self. rest = LinkedList(old val, old rest)

_vdlue _value _vdlue

self + + +

_rest _rest _rest

Useful List Method: prepend

e prepend(self, val)

- We may also want to add elements to the beginning of our list
(this will mutate our list, similar to append)

»+ The prepend operation is really efficient, we don't need to walk

through the list at all — just do some variable reassignments.

def prepend(self, val):
old val = self. value
old rest = self. _rest
self. value = val
self. rest = LinkedList(old val, old _rest)

_value _vdlue _value _vdlue

self _g _} _} _}

_rest _rest _rest _rest

Useful List Method: 1hsert

e 1nsert(self, val, index)
Finally, we want to allow for insertions at a specific index.
Basic idea:
It the specified index is O, we can just add to the beginning (easy!)

Otherwise, we walk to the appropriate index in the list, and

reassign the _rest attribute at that location to point to a new

LinkedList with the given value, and whose _rest attribute points
to the linked list 1t I1s displacing.

= 2

_rest

_value

_value ~value _vdlue

- > [f >

_rest _rest _rest

Useful List Method: 1hsert

e 1nsert(self, val, index)
Finally, we want to allow for insertions at a specific index.
Basic idea:
It the specified index is O, we can just add to the beginning (easy!)

Otherwise, we walk to the appropriate index in the list, and

reassign the _rest attribute at that location to point to a new

LinkedList with the given value, and whose _rest attribute points
to the linked list 1t I1s displacing.

_value _value _value _value

- El - > >

_rest _rest _rest —rest

Useful List Method: 1hsert

e insert(self, val, 1index)
+ If the specified index is O, we can just use the prepend method.

« Otherwise, check to see If we're at end of the list

+ Otherwise, we walk to the appropriate index in the list, and
perform the insertion

def insert(self, val, index):
1f index 1s 0, we found the item we need to return
if index == 0:
self.prepend(val)
elif we have reached the end, so just append
elif self. rest is None:
self. rest = LinkedList(val)
else we recurse until index reaches 0
else:
self. _rest.insert(val, index - 1)

[] Operator:__getitem__, __set _item__

 __getitem__(self, index) and
__setitem__(self, index, val)

- With lists, we can get or set the item at a specific index by using the []
operator

- get:val = mylist[1]
- set:mylist[2] = new_val

- To support the [] operator in our LinkedList class, we need to
implement __getitem__ and __setitem__

Basic idea:
- Walk out to the element at 1ndex

+ Get or set value at that index accordingly

Recursive!

mylist[2]

* implicitly: mylist.__getitem__(2)

* When using lists, we can get the item at a specific index by using
the [] operator (e.g,val = mylist[2])

- What might be the base case!
We've reached the index, return the value!

- What might be the recursive case!

Cut one item off the front of our list, and subtract one
from our index. Keep looking!

mylist[2]

* implicitly: mylist. _getitem__ (2)

- When using lists, we can get the item at a specific index by using
the [] operator (e.g, val = mylist[2])

def __getitem__(self, index):

base case
if index == 0: —_—
return self._value
else: |
return self. restl[index - 1] — | recursive case

my_lst = LinkedList(5, LinkedList(3, LinkedList(11)))
my_lst[2]

__getitem__(2)

return LinkedList(3, LinkedList(11))[1] __getitem__(0)

1f index ==
return LinkedList(11). value
__getitem__(1)

return LinkedList(11)[0] 11

[] Operator:__getitem__, __set _item__

 __getitem__(self, index) and
__setitem__(self, index, val)

With lists, we can get or set the item at a specific index by using the []
operator (e.g,val = mylist[1l] ormylist[2] = new_val)

[] list index notation also calls __ _setitem__ () method
index specifies which item we want, val 1is new value
def _ setitem_ (self, index, val):
1f index 1is 0, we found the item we need to update
if index ==
self. _value
else:
else we recurse until index reaches 0
remember that this implicitly calls __setitem__
self. restl[index = 1] = val

val

== Operator: __e(q__
__eg__(self, other)

When using lists, we can compare their values using the == operator

o support the == operator in our LinkedL1st class, we need to

implement __eq__

We want to walk the lists and check the values

Make sure the sizes of lists match, too

== Operator: __e(q__

_eq__(self, other)

* When using lists, we can compare their values using the == operator

» To support the == operator in our LinkedL1st class, we need to

implement __eq__

== operator calls __eq__ () method
1f we want to test two LinkedLists for equality, we test
1f all items are the same
other 1s another LinkedList
def __eq_ (self, other):

If both lists are empty

if self._rest is None and other.get_rest() is None:

return True

If both lists are not empty, then value of current list elements
must match, and same should be recursively true for
rest of the list
elif self._rest is not None and other.get_rest() is not None :
return self._value == other.get_value() and self._rest == other.get_rest()

If we reach here, then one of the lists is empty and other 1s not
return False

Other Special Methods

There are many other “special” methods In
Python.

e __eq__ (self, other): X y
e __ne__ (self, other): X y
e __lt__ (self, other): X <Yy
e __gt__ (self, other): X > Yy
e __add__(self, other) : X + Y
e __sub__(self, other): X - Yy
e __mul__(self, other): X ™Yy

e __truediv__(self, other): X \Y
e __pow__(self, other): X y

* [here are others!

L ooking Ahead

+ In CS136 you'll see doubly linked lists! Overcomes some of

the Inefficiencies of singly linked lists

LinkedL1st

LinkedListElement
LinkedListElement
LinkedListElement

LinkedListElement .
LinkedListElement

