
CS134 Lecture 30:
Special Methods & Linked Lists

Announcements & Logistics
• HW 9 due tonight @ 10 pm on GLOW

• Short: 6 questions for practice on OOP concepts
• Lab 9 Boggle: two-week lab now in progress

• Part 2 due May 1/2 (handout posted)

• Part 2 also has a prelab!

• Asks you to draw out the Boggle game logic
• Draw it on a sheet of paper and bring the diagram to lab
• Make sure it is legible and clear!

Do You Have Any Questions?

Last Time
• Learn how to implement several special methods which let us utilize

built-in operators in Python for user-defined types

• Discussed general concept of a linked list

• Recursively defined data structure

• Elements stored in objects that also store the “next object’s" location

Today’s Plan
• Write our own implementation of LinkedList

• Implement functionality (write code) for special methods:

• __init__

• __str__

• __len__

• __getitem__

• __contains__

• Discuss at high level (without code) other functionality we may want

But First…

Let’s get a better intuition for how a linked list behaves…

Volunteers?

Our Own Class LinkedList
• Attributes:

• _value, _rest

• Recursive class:

• _rest points to another instance of the same class

• Any instance of a class that is created by using another instance of
the class is a recursive class

5 3 11 None
_value

_rest

_value

_rest

_value

_rest

class LinkedList:
 """Implements our own recursive list data
structure"""

 def __init__(self, value=None, rest=None):
 self._value = value
 self._rest = rest

Initializing Our LinkedList

5 3 11 None
_value

_rest

_value

_rest

_value

_rest

rest is another
instance of our
LinkedList classHow do we create an

empty list?

Recursive Implementation: __str__
• Let's think about how to implement a string representation of our list

• What is the base case?

• What if our list has only one item

• Just return str (value) (so if value is int, this return str(5) e.g.

• How do we check if list only has one item in it?

• _rest is None

Recursive Implementation: __str__
• Let's think about how to implement a string representation of our list

• What is the base case?

• What if our list has only one item

• Just return str (value) (so if value is int, this return str(5) e.g.

• How do we check if list only has one item in it?

str() function calls __str__() method
def __str__(self):
 if self._rest is None:
 return str(self._value)

Recursive Implementation: __str__

Notice the use of
is and not ==

Python: "is None" vs " == None":
PEP 8 (Style Guide for Python Code) says:
"Comparisons to singletons like None should always be done
with 'is' or 'is not', never the equality operators."

http://www.python.org/dev/peps/pep-0008/

str() function calls __str__() method
def __str__(self):
 if self._rest is None:
 return str(self._value)
 else:
 return str(self._value) + ', ' + str(self._rest)

Recursive Implementation: __str__

5 3 11 None
_value

_rest

_value

_rest

_value

_rest

This is recursion since str calls
__str__. The base case is

when self._rest is None

• What if we want to enclose the elements in square brackets []?

• Idea: Use a helper method that does the same thing as __str__()
on the previous slide, and then enclose its return in '[]'

Recursive Implementation: __str__

 def __get_string(self):
 '''Helper method for str of contents'''
 if self._rest is None:
 return str(self._value)
 else:
 return str(self._value) + ', ' + self._rest.__get_string()

 def __str__(self):
 return "[" + self.__get_string() + "]"

• What happens when we call print on an empty LinkedList?

• Do we want a different behavior? How do we change our code?

Empty Lists?

 def __get_string(self):

 # handle empty list
 if self._value is None and self._rest is None:
 return '' # empty list notation

 elif self._rest is None: # value is not None
 return str(self._value)

 else: # neither is None
 return str(self._value) + ', ' + self._rest.__get_string()

 def __str__(self):
 return "[" + self.__get_string() + "]"

Special Method: __len__
• __len__(self)

• Called when we use the built-in function len() in Python on an
object obj of the class: len(obj)

• We can call len() function on any object whose class has the
__len__() special method implemented

• We want to implement this special method so it tells us the number of
elements in our linked list, e.g. 3 elements in the list below

5 3 11 None
_value

_rest

_value

_rest

_value

_rest

Implementing Recursively
• As our LinkedList class is defined recursively, let's implement the
__len__ method recursively

• Method will return an int (num of elements)

• What is the base case(s)?

• What about the recursive case?

• Count self (so, +1), and then call len() on the rest of the list!

5 3 11 None
_value

_rest

_value

_rest

_value

_rest

Recursive Implementation: __len__

5 3 11 None
_value

_rest

_value

_rest

_value

_rest

 # len() function calls __len__() method
 def __len__(self):
 # base case: handle empty list first
 if self._value is None and self._rest is None:
 return 0

 # list of length 1
 elif self._rest is None:
 return 1

 #recursive case (larger than 1)
 else:
 # same as return 1 + self._rest.__len__()
 return 1 + len(self._rest)

Other Special Methods

in Operator: __contains__
• __contains__(self, val)

• When we say if elem in seq in Python:

• Python calls the __contains__ special method on seq

• That is, seq.__contains__(elem)

• If we want the in operator to work for the objects of our class, we can do so by
implementing the __contains__ special method

• Basic idea:

• “Walk” along list checking values

• If we find the value we’re looking for, return True

• If we make it to the end of the list without finding it, return False

• We’ll do this recursively!

in Operator: __contains__
• __contains__(self, val)

• When we say if elem in seq in Python:

• Python calls the __contains__ special method on seq

• That is, seq.__contains__(elem)

• If we want the in operator to work for the objects of our class, we can do so by
implementing the __contains__ special method

 # in operator calls __contains__() method
 def __contains__(self, val):
 if self._value == val:
 return True
 elif self._rest is None:
 return False
 else:
 # same as calling self.__contains__(val)
 return val in self._rest

+ Operator: __add__
• __add__(self, other)

• When using lists, we can concatenate two lists together into one
list using the + operator (this always returns a new list)

• To support the + operator in our LinkedList class, we need to
implement __add__ special method

• Make the end of our first list point to the beginning of the other

• Basic idea:

• Walk along first list until we reach the end

• Set _rest to be the beginning of second list

• More recursion!

• __add__(self, other)
• When using lists, we can concatenate two lists together into one

list using the + operator (this always returns a new list)

• To support the + operator in our LinkedList class, we need to
implement __add__ special method

• Make the end of our first list point to the beginning of the other
 # + operator calls __add__() method
 # + operator returns a new instance of LinkedList
 def __add__(self, other):
 # other is another instance of LinkedList
 # if we are the last item in the list
 if self._rest is None:
 # set _rest to other
 self._rest = other
 else:
 # else, recurse until we reach the last item
 self._rest.__add__(other)
 return self

+ Operator: __add__

self is the “head” or
beginning of the list. Note

that it didn’t change!

Note: Technically this does
not return a new list. This is
more like extend. Let’s not

worry about this for now!

Useful list methods:
.append(), .prepend(), .insert()

Useful List Method: append

5 3 11
_value

_rest

_value

_rest

_value

_rest
None

val None
_value

_rest

• append(self, val)
• When using lists, we can add an element to the end of an existing list

by calling append (note that append mutates our list)

• Basic idea:

• Walk to end of list

• Create a new LinkedList(val) and add it to the end

_re
st

Useful List Method: append

5 3 11
_value

_rest

_value

_rest

_value

_rest
val None
_value

_rest

• append(self, val)
• When using lists, we can add an element to the end of an existing list

by calling append (note that append mutates our list)

• Basic idea:

• Walk to end of list

• Create a new LinkedList(val) and add it to the end

Useful List Method: append
• append(self, val)

• When using lists, we can add an element to the end of an existing list
by calling append (note that append mutates our list)

• This entails setting the _rest attribute of the last element to be a
new LinkedList with the given value.

 def append(self, val):
 # if am at the end of the list
 if self._rest is None:
 # add a new LinkedList to the end
 self._rest = LinkedList(val)
 else:
 # else recurse until we find the end
 self._rest.append(val)

Useful List Method: prepend
• prepend(self, val)

• We may also want to add elements to the beginning of our list
(this will mutate our list, similar to append)

• The prepend operation is really efficient, we don’t need to walk
through the list at all — just do some variable reassignments.

5 3 11
_value

_rest

_value

_rest

_value

_rest

_value

_rest
Noneself

 def prepend(self, val):
 old_val = self._value
 old_rest = self._rest
 self._value = val
 self._rest = LinkedList(old_val, old_rest)

Useful List Method: prepend
• prepend(self, val)

• We may also want to add elements to the beginning of our list
(this will mutate our list, similar to append)

• The prepend operation is really efficient, we don’t need to walk
through the list at all — just do some variable reassignments.

5 3 11
_value

_rest

_value

_rest

_value

_rest

_value

_rest
Noneself val

_value

_rest

old

 def prepend(self, val):
 old_val = self._value
 old_rest = self._rest
 self._value = val
 self._rest = LinkedList(old_val, old_rest)

Useful List Method: insert
• insert(self, val, index)

• Finally, we want to allow for insertions at a specific index.

• Basic idea:

• If the specified index is 0, we can just add to the beginning (easy!)

• Otherwise, we walk to the appropriate index in the list, and
reassign the _rest attribute at that location to point to a new
LinkedList with the given value, and whose _rest attribute points
to the linked list it is displacing.

11
_value

_rest

_value

_rest
5 3

_value

_rest
None

val
_value

_rest

Useful List Method: insert
• insert(self, val, index)

• Finally, we want to allow for insertions at a specific index.

• Basic idea:

• If the specified index is 0, we can just add to the beginning (easy!)

• Otherwise, we walk to the appropriate index in the list, and
reassign the _rest attribute at that location to point to a new
LinkedList with the given value, and whose _rest attribute points
to the linked list it is displacing.

11
_value

_rest

_value

_rest
5 3

_value

_rest
Noneval

_value

_rest

Useful List Method: insert
• insert(self, val, index)

• If the specified index is 0, we can just use the prepend method.

• Otherwise, check to see if we're at end of the list

• Otherwise, we walk to the appropriate index in the list, and
perform the insertion

def insert(self, val, index):
 # if index is 0, we found the item we need to return
 if index == 0:
 self.prepend(val)
 # elif we have reached the end, so just append
 elif self._rest is None:
 self._rest = LinkedList(val)
 # else we recurse until index reaches 0
 else:
 self._rest.insert(val, index - 1)

[] Operator: __getitem__, __set_item__
• __getitem__(self, index) and
__setitem__(self, index, val)
• With lists, we can get or set the item at a specific index by using the []

operator

• get: val = mylist[1]

• set: mylist[2] = new_val

• To support the [] operator in our LinkedList class, we need to
implement __getitem__ and __setitem__

• Basic idea:

• Walk out to the element at index

• Get or set value at that index accordingly

• Recursive!

mylist[2]
• implicitly: mylist.__getitem__(2)

• When using lists, we can get the item at a specific index by using
the [] operator (e.g., val = mylist[2])

• What might be the base case?

• What might be the recursive case?

We've reached the index, return the value!

Cut one item off the front of our list, and subtract one
from our index. Keep looking!

mylist[2]
• implicitly: mylist.__getitem__(2)

• When using lists, we can get the item at a specific index by using
the [] operator (e.g., val = mylist[2])

def __getitem__(self, index):
 if index == 0:
 return self._value
 else:
 return self._rest[index - 1]

base case

recursive case

my_lst = LinkedList(5, LinkedList(3, LinkedList(11)))
my_lst[2]

__getitem__(2)
...
return LinkedList(3, LinkedList(11))[1]

__getitem__(1)
...
return LinkedList(11)[0]

__getitem__(0)
 if index == 0:

return LinkedList(11)._value

11

[] Operator: __getitem__, __set_item__
• __getitem__(self, index) and
__setitem__(self, index, val)

• With lists, we can get or set the item at a specific index by using the []
operator (e.g., val = mylist[1] or mylist[2] = new_val)

[] list index notation also calls __setitem__() method
index specifies which item we want, val is new value
def __setitem__(self, index, val):
 # if index is 0, we found the item we need to update
 if index == 0:
 self._value = val
 else:
 # else we recurse until index reaches 0
 # remember that this implicitly calls __setitem__
 self._rest[index - 1] = val

== Operator: __eq__
• __eq__(self, other)

• When using lists, we can compare their values using the == operator

• To support the == operator in our LinkedList class, we need to
implement __eq__

• We want to walk the lists and check the values

• Make sure the sizes of lists match, too

• __eq__(self, other)

• When using lists, we can compare their values using the == operator

• To support the == operator in our LinkedList class, we need to
implement __eq__

== Operator: __eq__

== operator calls __eq__() method
if we want to test two LinkedLists for equality, we test
if all items are the same
other is another LinkedList
def __eq__(self, other):
 # If both lists are empty
 if self._rest is None and other.get_rest() is None:
 return True

 # If both lists are not empty, then value of current list elements
 # must match, and same should be recursively true for
 # rest of the list
 elif self._rest is not None and other.get_rest() is not None :
 return self._value == other.get_value() and self._rest == other.get_rest()

 # If we reach here, then one of the lists is empty and other is not
 return False

Other Special Methods
• There are many other “special” methods in

Python.
• __eq__ (self, other):

• __ne__ (self, other):

• __lt__ (self, other):

• __gt__ (self, other):

• __add__(self, other) :

• __sub__(self, other):

• __mul__(self, other):

• __truediv__(self, other):

• __pow__(self, other):

• There are others!

x == y
x != y
x < y
x > y
x + y
x - y
x * y
 x / y
x ** y

Looking Ahead
• In CS136 you’ll see doubly linked lists! Overcomes some of

the inefficiencies of singly linked lists

