
SOAR: a Self-Optimizing Adaptive SoC on FPGAs

Minwoo Kang

Professor Duane A. Bailey, First Reader.

Professor Kelly Shaw, Second Reader.

A thesis submitted in partial fulfillment of the requirements for the

Degree of Bachelor of Arts with Honors in Computer Science

WILLIAMS COLLEGE

Williamstown, Massachusetts

May 9, 2020

Abstract

With the power utilization wall imposed on modern microprocessors, architectural research has

turned to the use of specialized hardware as a source of continued performance scaling. As a

result, System-on-a-Chip (SoC) architectures containing hardware accelerators have gained signif-

icant traction over the past years. Unfortunately, each accelerator has a specific set of tasks it can

execute, and accelerator-based systems are often incapable of out-performing general-purpose pro-

cessors outside their target application domains. In this work, we propose SOAR, a reconfigurable

architecture that extends the range of hardware acceleration by adaptively tailoring its configura-

tion of accelerators to the running workload. The SOAR hardware is built as a 64-bit RISC-V SoC

with a collection of RoCC accelerators attached to a scalar, in-order Rocket core. Evaluation of the

design implemented on a Xilinx Artix-7 FPGA under RISC-V Linux demonstrates that our RoCC

accelerators can return speed-ups up to 10× and energy-efficiency improvements up to 170× over

equivalent software implementations. Along with SOAR hardware, we also introduce a software

infrastructure that infers dynamic power demands and accelerator utilization frequencies to deter-

mine the optimal configuration of on-chip accelerators. We propose the use of dynamic dispatch

for switching function execution between using hardware and using software library calls. Finally,

we explain how our proposed framework can be customized to enhance either energy-efficiency or

performance, or any arbitrary optimization goal.

1

Acknowledgements

I express my deepest gratitude towards Professor Duane Bailey, for his remarkable dedication,

clear advice and continued support throughout our journey investigating FPGAs, RISC-V, un-

clear documentations and perplexing hardware malfunctions. Without Duane’s care and guidance,

completing this thesis would not have been possible.

I would also like to thank Professor Kelly Shaw for her mentorship, heartfelt encouragements,

and careful reviews. Kelly has been wonderful, both as an instructor and as a research advisor,

and my understanding of computer architecture has been greatly enriched by learning from her.

Special thanks to Maddie Burbage, for her work on the combinatorial sequence generation

accelerator, and Daniel Yu, for discussions on previous research related to this work.

2

Contents

1 Introduction 5

2 Previous Work 7

2.1 Dynamically Reconfigurable Architectures . 7

2.2 Dynamic Code Execution in Heterogeneous Architectures 8

2.3 RISC-V Accelerator-Based SoCs . 10

2.4 Power-Adaptive Architectures . 13

2.5 Summary . 14

3 Hardware Implementation Workflow 16

3.1 Field Programmable Gate Array Architecture . 17

3.2 RISC-V Hardware Design Workflow . 19

3.2.1 Target Application: Bresenham’s Circle Drawing Algorithm 20

3.2.2 Describing the Circuit in Chisel . 21

3.2.3 Compiling into Verilog . 23

3.2.4 Simulating the Design . 25

3.3 FPGA Implementation Workflow . 26

3.4 Summary . 27

4 SOAR Architecture 28

4.1 Concept and Goals . 28

4.2 SoC Design and Implementation . 30

4.2.1 Rocket Core and the RoCC Accelerator Interface 30

4.2.2 lowRISC extension of the Rocket Chip generator 32

4.2.3 SOAR Accelerators . 34

4.3 Summary . 37

3

CONTENTS

5 Framework for Adaptive Utilization of Accelerators 39

5.1 Support for Dynamic Dispatch . 39

5.2 Determining the Working Set of Accelerators . 40

5.2.1 Power and Usage Monitoring . 41

5.2.2 Heuristic-based Customization . 42

5.3 Summary . 43

6 Evaluation 44

6.1 Methodology . 44

6.2 Hardware Utilization . 44

6.3 Performance Results . 45

6.4 Energy-Efficiency Results . 46

6.5 Summary . 47

7 Future Work 48

7.1 Improvements on the Hardware Architecture . 48

7.1.1 Diversifying the Collection of Accelerators . 48

7.1.2 Further Investigating the Host-Accelerator Memory Interface 48

7.1.3 Replacing the Software Infrastructure with Integrated Hardware Units 49

7.1.4 Designing a Custom Compiler . 49

7.1.5 Incorporating Partial Reconfiguration into SOAR 50

7.2 Improvements on Performance and Power Measurements 50

8 Conclusion 51

Appendix A. Acronyms 69

Appendix B. Chisel Code for RoCC Accelerators 69

Bibliography 69

4

1. Introduction

Today, we are living in a new golden age for computer architecture [1]. While the slowdown

of Moore’s law and the end of Dennardian scaling have imposed a power utilization wall [2] on

modern processors, a number of exciting, novel approaches to architectural design have sprung up

in response to the persisting demands for better processors in this era of dark silicon [3, 4]. A

noticeable trend is the shift of focus from processor performance to energy-efficiency; since a simple

scaling of on-chip transistor counts no longer returns improvements in performance, many chip

architects have begun to explore the possibilities of trading chip space for power.

As a result, recent literature has highlighted the use of accelerators, which are specialized

hardware only capable of performing a certain set of tasks but with greater performance and/or

energy-efficiency than general-purpose processors (GPPs). A popular strategy has thus been to

design heterogeneous System-on-a-Chip (SoC) architectures that couple a set of these accelerators

with general-purpose cores—a particular example is UCSD’s conservation-core (c-core) system

that achieves notable gains in energy-savings through its collection of energy-efficient application

specific integrated circuits (ASICs) [2]. However, a natural drawback to this approach is that

each accelerator has a limited range of applications it can improve. On the other hand, real-world

users are likely to demand processors to perform optimally for a variety of workloads. In response,

architects may imagine a system with as many accelerators as possible, but realistically there are

strict constraints on on-chip space and power. Hence, it is extremely important to carefully decide

which collection of accelerators the architecture should contain.

Reconfigurable fabric, such as Field Programmable Gate Arrays (FPGAs), may provide a

partial solution to such limitations of using accelerators. Although FPGAs are less space- and

performance-efficient than ASICs, they offer the ability to dynamically reconfigure the system

according to the given workload. Instead of hard-wiring a list of operations the SoC can accelerate,

a reconfigurable implementation will be able to modify such a list on-the-fly. We even further

suspect that, in many cases, the improvements from being able to tailor the hardware to the running

5

CHAPTER 1. INTRODUCTION

program can possibly outweigh the relative overhead from using FPGAs. It is also worth mentioning

that FPGAs, unlike ASICs, offer the flexibility to patch the accelerator designs according to version

updates of the target application. Therefore, FPGAs arguably have the potential for being ideal

platforms for implementing accelerator-based SoCs.

However, the remaining problem is how to decide which set of accelerators the system should

configure on the chip, at each given moment in time. In answering this question, we can perhaps

leverage our knowledge on how the O/S decides which set of pages should be kept in main memory.

The concept of a working set can be applied to the configuration of accelerators—if the system

can reason about which accelerators will be most useful during a certain time frame, then the

reconfigurable hardware can be directed to configure itself according to such reasoning. Further-

more, to make decisions towards optimizing energy-efficiency, this automated system could require

information about the accelerator utilization rates and the time-varying on-chip power demands.

In this project, we aim to develop a framework for reconfigurable SoCs to adaptively decide

their optimal set of accelerators. Our architecture will not only optimize efficiency by judiciously

power-gating (i.e., turning off) less utilized accelerators, but also by reconfiguring the set of on-chip

hardware units. Decisions about accelerator utilization will be made by a software infrastructure

and be based on measurements of accelerator usage statistics and dynamic power demands. From

the programmer’s perspective, this work provides an additional abstraction layer between the oper-

ating system and the underlying hardware that exposes the parellelism of the specialized hardware

for the user to capitalize on, while relieving the burden of the programmer having to decide on

the details of tailoring the hardware configuration to the user-specific workload. We believe such

autonomous personalization of hardware will allow users to maximize the efficiencies of dark silicon.

This work is organized as follows. Chapter 2 discusses the previous research on dynamic re-

configurable architectures; heterogeneous systems that dynamically decide whether code should

be executed in hardware or in software; RISC-V SoC architectures; and power-adaptive systems.

Chapter 3 presents the workflow of designing and implementing hardware on FPGAs, and Chap-

ter 4 details our proposed self-optimizing, adaptive architecture. Chapter 5 explains the software

framework through which our system power adaptively adjust its use of on-chip accelerators. In

Chapter 6, we report the methodology and results of performance and power consumption mea-

surements. Chapter 7 discusses future directions this work could pursue. Finally, Chapter 8 is a

brief summary.

6

2. Previous Work

Previous research related to this work can be grouped into four main categories. First, there exists

a large body of research on dynamically reconfigurable architectures, often implemented on Field

Programmable Gate Arrays (FPGAs), with capabilities to tailor parts of the hardware to varying

computational loads. Second, there has been a set of research projects that discuss frameworks for

judiciously orchestrating code execution on heterogenous hardware components to achieve better

energy-efficiency. Third, an increasing number of projects have been utilizing the RISC-V open-

source hardware ecosystem to implement System-on-a-Chip (SoC) designs with special-purpose

hardware as co-processors. Finally, many works have demonstrated architectures that involve

Power Management Units (PMUs) evaluating power demands on-the-fly and accordingly making

adjustments to the system. We consider these contributions in this chapter.

2.1 Dynamically Reconfigurable Architectures

Several research projects have explored architectures that include a reconfigurable hardware unit

as a co-processor that enables the system to harness power efficiency by dynamically configuring

the reconfigurable data path based on compile-time and/or run-time analysis.

The PRogrammable Instruction Set Computers (PRISC) microarchitecture developed by Raz-

dan and Smith is one of the earlier attempts on coupling programmable hardware units with a

General-Purpose Processor (GPP) [5]. The programmable functional units (PFUs) are designed

to execute a set of combinational functions that can be computed within a single instruction cycle

time. A custom reduced instruction set computing (RISC) instruction selects from up to 2048

possible PFU configurations and then returns the results of the computation. At a high level,

the approach is very applicable to more modern hardware: they use compile-time analysis to find

pieces of code which can be implemented more efficiently on programmable hardware (taking into

account the reconfiguration overhead) and develop a toolchain that will automatically implement

7

CHAPTER 2. PREVIOUS WORK

that reconfiguration.

The GARP architecture proposed by Callahan et al. couples a MIPS processor with a re-

configurable array that functions as a compute co-processor [6]. This paper first identifies key

concerns with using reconfigurable hardware in general: long reconfiguration times and low data

bandwidths. Though the capabilities of FPGAs have vastly improved over the years since GARP

was introduced, similar issues still apply today, given how FPGA-based architectures are less effec-

tive when executing tasks with low compute-to-memory-bandwidth ratios. Callahan et al. attempt

to work around the limitations of limited data bandwidth by implementing a 2D GARP array of

Configurable Logic Blocks (CLBs) that are interconnected with programmable wiring. The pro-

grammable wires allow the system to use the same data paths for multiple purposes, for loading

configuration data and also for synchronizing register values between the host and GARP array

when the array is idle. The same data paths are then used for memory accessing when the GARP

array is active. The actual GARP architecture was simulated using a cycle-accurate simulator and

results indicate that the GARP model was able to out-perform the most powerful CPUs at that

time.

The Chimaera system by Ye et al. is similar to GARP in that it also includes a small, recon-

figurable functional unit (RFU) tightly coupled with a general-purpose processor [7]. Like GARP,

this system includes a Chimaera C compiler that identifies sequences of source codes that can be

mapped to a single RFU operation. The paper introduces compiler optimizations for such map-

ping, including instruction combination, control localization and SIMD-like parallelized execution

of sub-word operations. Furthermore, the RFU contains a separate register file, an execution con-

trol unit and a configuration control and caching unit that allow the actual functional unit (the

reconfigurable array) to hold multiple RFU configurations at a time, reducing the burden of having

to load configurations from off-chip frequently. It is also notable that the RFU architecture is more

complex than GARP’s and is much closer to accelerator designs we have nowadays with dedicated

control and memory management units. The authors report results from timing experiments that

the Chimaera architecture returns an average of 21% performance improvements under their most

pessimistic latency model.

2.2 Dynamic Code Execution in Heterogeneous Architectures

Here, we discuss previously proposed energy-efficient heterogeneous architectures that demonstrate

frameworks for making decisions about whether to execute a given line of code in hardware or in

8

CHAPTER 2. PREVIOUS WORK

software.

In 2010, Venkatesh et al. suggested an architecture pairing general-purpose host processors

with specialized conservation cores (c-cores) that focus on energy efficiency rather than performance

improvements [2]. Their ASIC implementation demonstrates a system that consists of multiple tiles,

each with a unique set of c-cores as shown in Figure 1; further proposed is an automatic synthe-

sis toolchain that will generate such cores from selecting “hot” regions in the target application’s

code. An interesting aspect of this work is the idea of generating energy conserving cores instead

of performance-improving accelerators. Using c-cores allows the architecture to target a wider

range of workloads that may not have explicit parallel structures in the code but can still benefit

from improving the efficiencies related to dark silicon. More importantly, this work also presents a

generally-applicable framework for heterogeneous SoCs that involves: (1) exposing the availability

of c-cores to the compiler so that specific instructions will make use of the special-purpose hard-

ware; and (2) utilizing a fall-back system such that the general-purpose processors (GPPs) will

execute the code if no suitable c-core is available. The authors further address that they incor-

porate “patchability” into the c-core system with hopes of compensating for the fact their ASIC

implementations cannot be updated post-fabrication in case the target application had undergone

version updates. Although the additional hardware logic and control required for patching incurs

a 2× overhead in area and power consumption, simulation results report that the c-core enabled

architecture can return up to a 50% reduction in energy consumption.

Figure 2.1: High-level diagram of the c-core enabled system. (a) The system consists of multiple tiles. (b) Each tile

consists of a general-purpose core and a set of c-cores. Figure from Venkatesh et al. [2].

9

CHAPTER 2. PREVIOUS WORK

The same team from UCSD applied the c-core model to the Android platform. Swanson and

Taylor explain that their motivation for developing GreenDroid arises from the fact that the Android

mobile phone software stack spends 95 percent of its time executing just 43,000 static instructions;

since c-cores are best applied to workloads that repeatedly execute the same functions, Android

applications are great targets for the c-core architecture [8]. The “cold” code that the toolchain

does not generate c-cores for are instead executed by the host CPU. The experimental results based

on a 45nm research prototype, containing about 100 c-cores, report up to 11× energy-savings while

maintaining similar, if not improved, levels of performance.

Quasi-specific Cores (QsCores) are generalized versions of c-cores that are capable of executing

a set of general-purpose computations instead of a single, specific piece of code [9]. QsCores offer a

major improvement in using ASICs as co-processors, since a relatively small number of these cores

are able to support a potentially large fraction of the target application’s code. In other words,

in a QsCore-enabled system, a significant portion of the code can be executed via specialized

cores without having to execute them on the less-efficient host CPU. To auto-generate such cores,

Venkatesh et al. augment their synthesis toolchain from [2], so that the compiling system profiles

hotspots in the application code and further identifies similar code patterns across the hotspots.

The system also explores the trade-offs between computational powers of individual QsCores and

the area required for building each core. As a result, what is generated is an optimal set of QsCores

for a given input workload and on-chip area constraints. The QsCore-enabled system requires 50%

fewer specialized cores than a comparable c-core (fully-specialized) system and also provides up to

25 × energy-efficiency compared to general-purpose processors over a diverse set of workloads.

2.3 RISC-V Accelerator-Based SoCs

The RISC-V Instruction Set Architecture (ISA) is an open-source ISA [10] that is increasingly

becoming adopted by both academic researchers and industry manufacturers. A notable imple-

mentation of this ISA is Berkeley’s Rocket Chip SoC Generator—a number of recent publications

have based their architectures on either the scalar, in-order Rocket core or the speculative Berkeley

Out-of-Order Machine (BOOM)[11]. In this section, we describe previous research contributions

that share similar design patterns of using the Rocket Chip generator platform and attaching

special-purpose hardware units as co-processors.

In 2016, Lee et al. developed the Hwacha vector-processor to work alongside the scalar Rocket

core [12]. The proposed vector-processor optimizes its efficiency through packing vector arithmetic

10

CHAPTER 2. PREVIOUS WORK

operations into separate blocks of instructions; the vector issue unit then fetches and decodes vector

instructions, and breaks them down into smaller operations to be executed in parallel by a systolic

pipeline. The scalar host processor and the vector accelerator have independent instruction caches

but share a 32KB data cache. It is further notable that Hwacha is integrated into the host’s demand-

paged virtual memory environment, and at the same time, also achieves a peak energy-efficiency

of 16.7 double-precision GFLOPS/W.

Mao provides an example of attaching a hardware accelerator to the Rocket core platform via

the Rocket Custom Co-processor (RoCC) interface [13] as shown in Figure 2.2. More specifically,

this work explores the design of a memory to memory copy accelerator that is—like the Hwacha

vector-processor—a Direct Memory Access (DMA) engine but is also aware of the virtual memory

of the host. Mao’s accelerator is effective because it has access to the host’s page table walker, can

perform its own address translation with its translation lookaside buffer (there is hence no need for

page-pinning), and can also communicate with the host CPU in cases of page faults. Specifying

such complicated control and communication between the host and the accelerator is made easy

through the RoCC interface. Furthermore, using the RoCC interface allows users to easily invoke

the hardware accelerator through custom memcpy() instructions that extend the RISC-V ISA.

Figure 2.2: High-level diagram of the RISC-V Rocket architecture with a memcpy accelerator as a RoCC co-processor.

Figure from Mao [13].

Koenig et al. also develops a RoCC accelerator for exact dot product computations [14]. In

11

CHAPTER 2. PREVIOUS WORK

this design, the authors ultimately find that connecting the accelerator to the host’s L2 data cache

with a 128-bit interface (compared to interfacing with the 64-bit data path to the L1 cache) allows

significantly better performance, especially when the input vectors are large enough to exceed the

size allowed in the L1 cache. Results compare the cycles-per-element (CPE) of their accelerator

against comparable solutions using software libraries, and the authors find that the accelerator fully

saturates the data cache bandwidth and achieves CPEs comparable to the Intel MKL, which is one

of the fastest software implementations of dot products built with kernels leveraging x86 Advanced

Vector Extension (AVX) instructions.

With the Celerity 511-core architecture, Davidson et al. showcase that it is possible to build

an extremely high-performant architecture based on the RISC-V Rocket ecosystem [15]. As shown

in Figure 2.3, the Celerity SoC consists of three architectural tiers: (1) the general-purpose tier

that has five Linux-capable Rocket cores; (2) the specialization tier built with a Binarized Neural

Network (BNN) accelerator; and (3) the massively-parallel tier that has a 496-core tiled, many-

core array. Each of the tiles in the massively-parallel tier contains a low-power, 5-stage, in-order

RISC-V Vanilla-5 core and a simple router that connects the tile to the mesh interconnection

network. An interesting aspect of this architecture is the implementation of a mesh Network-

on-a-Chip (NoC) of the many-core array: the authors propose an extension to the load-reserved,

store-conditional (LR-SC) atomic instructions that they call LR load-on-broken-reserve (LR-LBR),

which puts the core pipeline into a low-power state until the next remote store occurs. This custom

atomic instruction enables a tight producer-consumer synchronization in the many-core network,

allowing Celerity to more efficiently utilize the massively-parallel tier. Also described is the use

of High-level Synthesis (HLS) to generate BNN accelerators from initial C++ implementations.

Such example demonstrates how recent improvements in HLS tools enable architects to produce

specialized accelerator architectures without the design burden of having to detail the hardware at

the circuit level, using a hardware description language (HDL). Like the memory copy unit and dot

product accelerator mentioned above, Celerity interfaces its accelerators with the general-purpose

tier using the RoCC interface. Combining all three tiers of hardware, the Celerity architecture is

reported to improve performance-per-watt by more than 100× compared to a mobile GPU.

12

CHAPTER 2. PREVIOUS WORK

Figure 2.3: High-level diagram of the Celerity architecture. The section in green refers to the general-purpose tier;

section in blue refers to the specialization tier; and section in red refers to the massively-parallel. tier. Figure from

Davidson et al. [15].

2.4 Power-Adaptive Architectures

Historically, Dynamic Voltage and Frequency Scaling (DVFS) has been a popular power manage-

ment mechanism incorporated into a wide variety of power-aware architectures. Here, we discuss

relatively recent research on systems that use PMUs to adaptively adjust their behavior beyond

the scope of traditional DVFS.

Eldridge et al. from IBM Research designed VELOUR, a RISC-V heterogeneous system with

a machine learning accelerator and a power and resiliency management unit (PRIME) [16] for

low voltage operations. As shown in Figure 2.4, the VELOUR architecture includes Critical Path

Monitor (CPM) sensors that feed PRIME with real-time data on on-chip power demands; also

included are performance counters that detect power proxy events. PRIME further includes state

machines that monitor other metrics of power usage: a power-history-based voltage droop predictor

(VDP) and a power management unit (PMU), with which PRIME predicts if at any point in

time the host Rocket core or one its accelerators will perform incorrect operations. In this case,

PRIME takes action to throttle the core for a pre-computed length of duty cycle that it is based

on statistics collected by the VDP and PMU. The authors further demonstrate a framework for

testing system behavior under low voltage situations—CHIFFRE is a Chisel / FIRRTL based fault

injection tool that allows pre-ASIC experimentation. Another notable aspect of this work is that

the entire architecture was built in the RISC-V open-source environment and that both PRIME

13

CHAPTER 2. PREVIOUS WORK

and CHIFFRE were implemented using the RoCC interface.

Figure 2.4: High-level diagram of the VELOUR architecture. The systems consists of a RISC-V Rocket core, PRIME,

CHIFFRE and a neural network hardware accelerator. Figure from Eldridge et al. [16].

s

Keller et al. from UC Berkeley developed a RISC-V based architecture with an integrated and

programmable PMU that allows the implementation of a variety of power management algorithms

[17]. The authors designed such a PMU with a 32-bit 3-stage in-order processor (Z-scale) with a

8KB scratchpad to which the power-management programs were written; the minimal design of the

3-stage processor allows sufficient compute capabilities for processing relatively complex algorithms

while incurring small costs to on-chip area (0.06 mm2 when implemented in 28 nm FD-SOI). Fur-

thermore, the switched-capacitor DCDC (SC-DCDC) system used for adaptive clock generation

also provides toggle signals that can be compared against a fixed reference frequency to provide a

simple, non-invasive measurement of core-power usage. PMU cores access these power measure-

ments and use them to coordinate fine-grained voltage scaling (AVS) without the involvement of

the host processor. As a result, the PMU can adaptively switch the core voltage by detecting

changes in the workload within a 1µs time frame and reduce energy consumption by almost 40%.

2.5 Summary

Optimizing energy-efficiency through the use of specialized hardware has become a standard de-

sign practice in this new era of computer architecture research. Previous architectures that couple

14

CHAPTER 2. PREVIOUS WORK

reconfigurable units with general-purpose cores [6, 18] clearly demonstrate that a system with

dynamic customization capabilities can significantly reduce power consumptios. Using reconfig-

urable units, if not more general implementations of specialized units, allows systems to deliver

enhanced efficiencies, not only over a wider range of workloads, but also in a more scalable manner

since they help reduce the area required to implement the application-specific units. Research on

c-core and Qs-Core systems [2, 8, 9] also suggests that a framework of executing code in special-

ized hardware whenever possible—and falling back to executing on the host CPU when hardware

is unavailable—is a reasonable approach for such heterogeneous SoC designs. In particular, the

RISC-V ecosystem has already produced a volume of research on special-purpose hardware that is

open-source and available to anyone [12–14, 16], and the number of such contributions are expected

to continuously grow in the near future. Previous works on power-adaptive designs further hint

at the opportunities of achieving even better power-efficiencies with the help of integrated, intelli-

gent and self-aware Power Management Units [16, 17]. Overall, previous literature suggests that a

reconfigurable SoC that can dynamically configure a range of special-purpose hardware according

to on-chip power demands will be able to attain notable improvements in energy-savings; perhaps

the best platform for implementing this architecture would be the RISC-V ecosystem which pro-

vides a wealth of open-source hardware development tools, along with a range of readily-available

accelerator designs.

15

3. Hardware Implementation Workflow

The Field Programmable Gate Array (FPGA) is the most suitable computing platform for im-

plementing our dynamic, self-optimizing architecture. FPGAs not only offer the reconfigurablilty

needed for run-time customization of hardware but also are becoming increasingly available, thanks

to the improvements in manufacturing technologies. Today’s commercial-grade FPGAs feature

impressive logic cell capacities, large enough to implement digital systems as complex as Linux-

bootable processors. Shown in Figure 3.1 is one of such FPGA product, the Xilinx Artix-7 Nexys-A7

board, which we chose to use for this project.

Figure 3.1: Xilinx’s Nexys-A7 board.

Concerns with using FPGAs, however, arise from the fact that most commercial FPGA ar-

chitectures are both complex and proprietary and that programming them requires the use of

16

CHAPTER 3. HARDWARE IMPLEMENTATION WORKFLOW

vendor-specific electronic design automation (EDA) tools. For example, to use Xilinx products

there is no other choice but to study and utilize Xilinx’s Vivado Design Suite software. Such chal-

lenges of working with FPGAs are in fact one of the biggest hindrances to their wide-spread use,

especially among application developers who could otherwise immensely benefit from accelerating

software through specialized hardware on FPGAs. In this chapter, therefore, we first sketch fur-

ther details of a typical FPGA architecture to better understand its reconfigurability; then, we walk

through the process of creating and implementing a high-level digital design on Artix-7 FPGAs,

based on concrete examples.

3.1 Field Programmable Gate Array Architecture

Here, we provide an introduction to the internal architecture of an FPGA. Historically originating

from Programmable Logic Devices (PLDs), FPGAs have over the years evolved into a powerful

reconfigurable fabric consisting of two main components: configurable logic blocks (CLBs) and

programmable interconnects. The user is able to configure (and reconfigure) the fabric by specifying

both the function of each block and the interconnection between the logic blocks. A typical FPGA

architecture is designed as a 2D array of logic blocks. As shown in Figure 3.2, logic blocks in such

mesh-styled structure often resemble remotely placed “islands” and are thus commonly referred to

as logic islands.

Figure 3.2: Internal architecture of a typical island-style/mesh-style FPGA. Logic islands equivalently refer to CLBs.

17

CHAPTER 3. HARDWARE IMPLEMENTATION WORKFLOW

In FPGAs, combinational logic is implemented through logic blocks, which are in turn con-

structed with multiple instances of look-up-tables (LUTs). In contrast to ASICs or other traditional

CMOS Integrated Circuits (ICs) where combinational logic is implemented through hard-wiring

physical logic gates, FPGAs simulate the same behavior through LUTs that can implement arbi-

trary combinational functions. An n-bit LUT is in other words a general-purpose logic gate that

can implement any deterministic function of n inputs. Besides LUTs, a typical logic block will

also include FFs to optionally store the outputs of the logic function and thus support a pipelined

circuit design. CLBs further include latches that are set by the configuration bit-stream given by

the user. Bits stored in those latches support the reconfigurability of the logic blocks and hence the

overall FPGA. Specific details on how CLBs are organized vary greatly depending on the FPGA

vendor and even among different products from the same vendor. As an example, in the Xilinx

Artix-7 FPGAs we choose to use, individual CLBs consist of elementary logic units called logic

slices that contain four 6-input LUTs and eight FFs.

The other key component of an FPGA is the programmable interconnect that sets the com-

munication channels between arbitrary CLBs. Since the FPGA itself can be thought of as a two-

dimensional grid of logic blocks, the routing architecture consists of bundles of wires that run across

the chip vertically and horizontally. Placement of the logic units and routing are mostly determined

at the hardware compile-time when the user generates the configuration bit-stream; the goal of the

EDA software is to determine the the placement of logic blocks that will minimize wiring. Most

FPGA vendors such as Xilinx and Intel/Altera, again use latches to store the configuration of the

interconnects. These latches are also configured by the user-defined bit-stream.

Hence, FPGAs are largely a homogenous grid built with logic blocks and interconnects: thanks

to this regular structure, manufacturing FPGAs are less complex than fabricating a modern CPU of

the same size. As a result, the logic capacities have grown explosively over the past decades and the

FPGAs today are powerful enough to implement a wide range of digital circuits. However, to further

improve performance and usability, most FPGA vendors also include other IC components in their

products, such as block RAMs (BRAMs), digital signal processing (DSP) slices, I/O controllers,

Peripheral Component Interconnect express (PCIe) and more. BRAMs store larger amounts data

than what logic blocks can support and thus help the FPGA to handle data-intense computations;

DSP slices have dedicated multipliers and adders to efficiently handle signal processing loads; many

commercial FPGAs also include various types of high performance I/O components to optimize

data transport to and from other on-chip devices, such as CPUs, GPUs, add-on SSDs and ethernet

ports.

18

CHAPTER 3. HARDWARE IMPLEMENTATION WORKFLOW

3.2 RISC-V Hardware Design Workflow

Having described the basics of FPGAs, we move on to discussing the workflow of implementing

custom digital logic on an Artix-7 FPGA. A typical implementation workflow is illustrated in Figure

3.3.

Figure 3.3: A typical FPGA synthesis flow. Figure from [19].

In most cases, one begins with a high-level concept or function in mind—in the context of

building accelerators, this would be the target algorithm the user wishes to accelerate using hard-

ware. The next step is to describe the corresponding circuit at the Register Transfer Level (RTL)

using a hardware description language (HDL). The two most commonly used HDLs are Verilog

and Very High Speed Integrated Circuit (VHSIC) Hardware Description Language (VHDL), both

of which date back to the 1980s. Unlike software programming languages like C that are compiled

into assembly language instructions for the CPU to execute at run-time, these HDLs are compiled

and synthesized to a definition file describing the hardware itself. Finally, logic synthesis and place-

and-route tools, often part of commercial EDA software, are used to take the input RTL to produce

a gate-level netlist and then either a physical circuit layout or a FPGA configuration bitstream.

The first immediate challenge is to effectively produce a RTL implementation of the desired

algorithm. Manual implementation in Verilog or VHDL is highly unreliable and inefficient since

the designer must directly and entirely describe the hardware with low-level circuit blocks such

as adders, multiplexers and registers. The design process is painfully slow even for experienced

19

CHAPTER 3. HARDWARE IMPLEMENTATION WORKFLOW

hardware developers, let alone application programmers with little to no knowledge about circuit-

level designs. Therefore, many research and commercial efforts have produced high-level synthesis

(HLS) tools that will auto-generate low-level RTL code from high-level algorithm descriptions.

Among the many available HLS tools, we choose to use Chisel, a parameterizable hardware

design language that is embedded in Scala [20]. There are two important reasons behind our

choice: (1) Chisel is a highly efficient language that enables agile development of complex circuit

generators and offers a wealth of sample code as templates for custom designs, and (2) Chisel is

part of an ecosystem that includes many helpful resources for hardware development, most notably

the RISC-V Instruction Set Architecture (ISA) [10] and the Rocket Chip SoC Generator [11].

Since we are in need of an open-source processor for our own architecture, we decided to use the

in-order, scalar Rocket core as our host CPU, and given that Rocket itself is written in Chisel,

we implemented the rest of our design in the same language. In the remainder of this section,

we describe the process of specifying a circuit for a target application in Chisel, using Chisel to

generate hardware-synthesizable Verilog code, and finally testing the Verilog output via simulation

tools.

3.2.1 Target Application: Bresenham’s Circle Drawing Algorithm

Bresenham’s circle drawing algorithm is a low-cost method to accurately represent a continuous

circle on a pixelated screen, without the use of any floating-point operations. It is an example

of a computationally intensive task with a relatively straight-forward control flow, making it an

ideal candidate for constructing an example hardware accelerator. Based on the symmetry of a

circle centered at the origin, we only need to compute the pixel coordinates on the first octant as

described in Algorithm 1.

20

CHAPTER 3. HARDWARE IMPLEMENTATION WORKFLOW

Algorithm 1 Bresenham’s Circle Drawing Algorithm

Require: Radius r > 0

e← −r, x← r, y ← 0

a[]← Array of computed coordinates

while x ≥ y do

a[y]← x

e← e+ (2y + 1), y ← y + 1

if e ≥ 0 then

e← e− (1− 2x), x← x− 1

end if

end while

3.2.2 Describing the Circuit in Chisel

To build a hardware unit for the circle drawing algorithm, we first need to specify the circuit in

Chisel. Here, we list implementations of the algorithm both in C and in Chisel to highlight the

differences.

1 int swCircle(int r, int a[]) // Inputs

2 {

3 // Local Variables

4 int e = -r;

5 int x = r;

6 int y = 0;

7

8 // Computatation

9 while (x >= y) {

10 a[y] = x;

11 e = e+2*y+1;

12 y++;

13 if (e >= 0) {

14 e = e+1-2*x;

15 x--;

16 }

17 }

18 return y; // Output

19 }

Listing 3.1: C Implementation

21

CHAPTER 3. HARDWARE IMPLEMENTATION WORKFLOW

1 class Circle extends Module {

2 val io = IO(new Bundle {

3 // Inputs

4 val r = Input(UInt (8.W))

5 val outputEnable = Input(Bool())

6 // Outputs

7 val x = Output(UInt (8.W))

8 val y = Output(UInt (8.W))

9 })

10

11 // Local Variables

12 val e = RegInit (~io.r+1.U)

13 val tempx = RegInit(io.r)

14 val tempy = RegInit (0.U(8.W))

15 val e2 = e + tempy+ tempy + 1.U

16 val e3 = e + 2.U -tempx -tempx+tempy+tempy

17 val done = tempx <= tempy || ~io.outputEnable || (tempx -1.U < tempy +1.U)

18

19 // Computation

20 tempy := Mux(~done , (tempy + 1.U),tempy)

21 tempx := Mux(~done && e2(7)===0.U, (tempx -1.U), tempx)

22 e := Mux(done , e, Mux(e2(7)===0.U, e3 ,e2))

23 io.x := tempx

24 io.y := tempy

25 }

26

27 // Generate hardware to later run computations

28 object CircleDriver extends App {

29 chisel3.Driver.execute(args , () => new Circle)

30 }

Listing 3.2: Chisel Implementation

The greatest difference between the two versions arises from the fact that the C code is a direct

software implementation of the computation itself, whereas the Chisel code is a specification of a

hardware artifact that will later be invoked to perform the computations. While the C program is

called every time we run the algorithm, the Chisel code is executed only once at compile-time–from

then on, the same hardware unit is re-used with different input values, instead of having to make

modifications.

Despite the differences, however, the C and Chisel code listed in Listing 3.1 and 3.2 exhibit

remarkable similarities in their structures. Both implementations include code blocks that describe

22

CHAPTER 3. HARDWARE IMPLEMENTATION WORKFLOW

the computations for the circle drawing algorithm, detail what the input and outputs are, and

declare local variables to aid the computation. Such similarities demonstrate the clear advantages of

using a HDL embedded in a software programming language like Scala. Chisel offers many of Scala’s

modern language features, including support for object-oriented and functional programming, code-

reuse and hardware description via composable, parameterizable modules. For example, Mux is a

higher-level abstraction of multiplexers in Chisel which can be fully parameterized and used as if it

were a software construct. Compiling Chisel, the multiplexer object is automatically transformed

down into register and wire-level units that Verilog is capable of understanding.

3.2.3 Compiling into Verilog

Based on our Chisel code in Listing 3.2, we can generate a Verilog output using the Flexible Inter-

mediate Representation for RTL (FIRRTL) compiler that is built into the Chisel framework[21].

Chisel itself contains a front-end compiler that generates the specified circuit into intermediate data

structures, which are in turn simplified, optimized and verified by the back-end FIRRTL frame-

work. Through this chain of circuit-level transformations, FIRRTL emits the final circuit design

in Verilog. The combination of Chisel and FIRRTL greatly eases the workflow of digital hardware

design as the generation of RTL code from a Scala-embedded language is entirely automated and

sufficiently optimized. Listing 3.3 gives a snippet of the Verilog code that is produced from the

Chisel implementation of the circle drawing algorithm we saw earlier.

1 module Circle(// @[:@3.2]

2 // Inputs

3 input clock , // @[:@4.4]

4 input reset , // @[:@5.4]

5 input [7:0] io_r , // @[:@6.4]

6 input io_outputEnable , // @[:@6.4]

7 // Outputs

8 output [7:0] io_x , // @[:@6.4]

9 output [7:0] io_y // @[:@6.4]

10);

11 // Local Variables

12 wire [7:0] _T_13; // @[circle.scala 18:20: @8.4]

13 wire [8:0] _T_15; // @[circle.scala 18:25: @9.4]

14 wire [7:0] _T_16; // @[circle.scala 18:25: @10 .4]

15 reg [7:0] e; // @[circle.scala 18:19: @11 .4]

16 reg [31:0] _RAND_0;

17 reg [7:0] tempx; // @[circle.scala 19:23: @12 .4]

23

CHAPTER 3. HARDWARE IMPLEMENTATION WORKFLOW

18 reg [31:0] _RAND_1;

19 reg [7:0] tempy; // @[circle.scala 20:23: @13 .4]

20 reg [31:0] _RAND_2;

21 ...

22 assign _T_13 = ~ io_r; // @[circle.scala 18:20: @8.4]

23 assign _T_15 = _T_13 + 8’h1; // @[circle.scala 18:25: @9.4]

24 assign _T_16 = _T_13 + 8’h1; // @[circle.scala 18:25: @10 .4]

25 assign _T_21 = e + tempy; // @[circle.scala 21:14: @14 .4]

26 assign _T_22 = e + tempy; // @[circle.scala 21:14: @15 .4]

27 ...

28 // Computation

29 always @(posedge clock) begin

30 if (reset) begin

31 e <= _T_16;

32 end else begin

33 if (!(done)) begin

34 if (_T_58) begin

35 e <= e3;

36 end else begin

37 e <= e2;

38 end

39 end

40 end

41 if (reset) begin

42 tempx <= io_r;

43 end else begin

44 if (_T_59) begin

45 tempx <= _T_45;

46 end

47 end

48 if (reset) begin

49 tempy <= 8’h0;

50 end else begin

51 if (_T_50) begin

52 tempy <= _T_48;

53 end

54 end

55 end

56 endmodule

Listing 3.3: Parts of the Verilog output generated by Chisel/FIRRTL

24

CHAPTER 3. HARDWARE IMPLEMENTATION WORKFLOW

3.2.4 Simulating the Design

The final step of the hardware design workflow is to test and verify the circuit. Testing the

logical fidelity of a hardware design is in many ways more complex than testing software since

the testbench must accurately simulate the entire hardware environment attached to the circuit

at hand. Fortunately, the RISC-V ecosystem offers several highly effective tools for pre-silicon

hardware simulation and perhaps the most powerful is FireSim, an open-source FPGA-accelerated

cycle-accurate RTL simulator [22]. FireSim goes beyond the scope of many software RTL simulation

tools, by offering standard I/O models for DRAM, disk and Ethernet network connections and

allowing the user to simulate not only one but also clusters of SoCs by harnessing multiple FPGA

instances available through cloud computing services. More recently, FireSim has further integrated

a profiling and modeling framework that optimizes the hardware-software stack as a whole, taking

into account the operating system, application software, RTL implementations and network links

simultaneously [23]. Hardware developers interested in high-performance RTL simulation should

refer to these tools.

However, in our case, the RTL design is relatively small in scale. There is no need for a

cloud-based FPGA-accelerated platform for simulation. Instead, we opt to use another software

RTL simulation tool integrated into the RISC-V system stack called Verilator. This tool produces

a cycle-accurate behavioral model in C++ based on the input Verilog file and offers more reliable

performance than other event-driven RTL simulators. With Verilator, users can simply run assem-

bly instruction tests or benchmarks to verify and estimate the performance of the given circuit. Test

scripts can be written in C and their binaries are compiled using the RISC-V cross-compiler to be

then run by Verilator against its behavioral model. An example is shown in Listing 3.4 of a snippet

of the test script written for a Rocket-attached accelerator for the circle drawing algorithm.The

software implementation of the algorithm and the hardware-invoking function calls can be written

side-by-side and run consecutively in the same binary to test any differences in the computation

results.

1 static inline void hwCircle_init(int r)

2 {

3 ROCC_INSTRUCTION_S (0, r, 0);

4 }

5

6 static inline unsigned long hwCircle_iter ()

7 {

8 unsigned long value;

25

CHAPTER 3. HARDWARE IMPLEMENTATION WORKFLOW

9 ROCC_INSTRUCTION_D (0, value , 1);

10 return value;

11 }

12

13 int hwCircle(int radius , int x[])

14 {

15 int y = 0;

16 int xVal;

17 hwCircle_init(radius);

18 x[y++] = radius;

19 while (xVal = hwCircle_iter ()) {

20 x[y++] = xVal;

21 }

22 return y;

23 }

Listing 3.4: Parts of the Verilator test script

3.3 FPGA Implementation Workflow

Having completed and verified the RTL circuit, we finally run the Vivado Design Suite to implement

the design onto a physical FPGA board. Once we input the Chisel-generated Verilog file, Vivado

creates a new intellectual property (IP) block, which is the term used by Xilinx for individual

hardware blocks to be placed on the FPGA. To implement the full-scale SOAR SoC, we must input

all generated Verilog files, not only for our circle drawing accelerator but also for the host Rocket

core and its associated peripherals. Vivado attaches the accelerator IP as an add-on to the Rocket

IP, and the full design is merged together before it is finally embedded onto a physical FPGA.

Based on the layout specified in Verilog, the EDA software automatically verifies the wiring

and clock synchronization across all the elements in the circuit. Once Vivado has verified all

interconnects, the circuit can be synthesized and implemented. Hardware synthesis usually takes a

significantly greater amount of time compared to an equivalent software compilation: in the case of

synthesizing a full-scale SoC with a host CPU, the process can take up to 30 minutes. This implies

that any updates to the hardware design post-synthesis are extremely time consuming, and it is

important to step-by-step verify the circuit using RTL simulations. As part of the synthesis and

implementation process, Vivado outputs several reports on timing, power consumption and area

utilization estimates. Figure 3.4 shows an implemented circuit diagram of the Rocket host core

containing a circle drawing algorithm accelerator as a co-processor on an Artix-A7 (XC7A100T-

26

CHAPTER 3. HARDWARE IMPLEMENTATION WORKFLOW

1CSG324C) FPGA; Vivado reports that the Rocket core system occupies 75% of the available

LUTs, 25% of the FFs and 61% of the BRAMs, while the accelerator utilizes 1.6% of the available

LUTs, 0.4% of the FFs and 0.5% of the BRAMs.

Figure 3.4: Implemented circuit diagram for the Rocket core; the area marked in yellow indicates the logic units that

are being used for Rocket.

3.4 Summary

Through the example of Bresenham’s circle drawing algorithm, we see that the process of pro-

graming a high-level algorithm on an FPGA is a fairly involved process. The complexity of this

process often discourages researchers from exploring the potentials of accelerator-rich SoCs that

can significantly improve system performance and energy-efficiency in various application domains.

However, we also witness that the advent of highly efficient open-source tools, both for HLS and

hardware simulation, is bringing about significant changes to the hardware development landscape.

We predict that these tools will attract more developers to design and implement their own sets of

accelerators and that open-source accelerator designs will continue to become increasingly available

to everyone.

27

4. SOAR Architecture

4.1 Concept and Goals

Research discussed in Chapter 2 demonstrates that accelerator-rich SoCs can offer significant im-

provements in energy-efficiency and/or performance compared to GPPs. Indeed, there are clear

advantages to utilizing domain-specific hardware units, and in this work, we consider a heteroge-

neous SoC that attaches several accelerators to a general-purpose CPU. However, there are several

major drawbacks in current implementations of such systems.

• Accelerator-based architectures have a limited range of functions they can improve. For

example, an SoC with a neural net accelerator will be tailored towards high performance

machine learning inference, but will exhibit equal or worse performance when executing any

other workloads. Due to the very nature of domain-specific hardware, there exists a strict

restriction on the generality of tasks that each accelerator can perform. Nonetheless, there still

exists a demand for improved performance over general-purpose workloads, and the question

is how to optimize performance over a wide range of tasks with accelerators.

• Most architectures so far have employed a static policy for using accelerators. Mainly, the

system identifies instructions or tasks that can be run using hardware and will simply execute

the function in hardware whenever possible. However, we anticipate situations where the

system should be optimized towards power efficiency, whereas in other cases the system

should focus on performance and throughput. Therefore, the hardware may need to adjust

its setting for using accelerators, depending on the user-defined optimization goals and specific

workloads the system is executing at the moment.

• The process of using accelerators has been complex, often requiring the user to understand

the underlying hardware architecture. And because most systems have used widely varying

CPU-accelerator interfaces, it is difficult to imagine a single architecture with a freely in-

28

CHAPTER 4. SOAR ARCHITECTURE

terchangable, customizable list of accelerators. Instead, it would be advantageous to have

a system that will automatically control and streamline the process of invoking individual

accelerators, such that users can simply run the same software that they would normally run

on a GPP and still receive performance gains and/or energy savings.

In response to the challenges listed above, we propose an architecture that is reconfigurable,

adaptive and easy-to-use.

• We propose building our system on reconfigurable fabric, which will allow our architecture to

dynamically customize its list of physically available accelerators. We devise a system that is

capable of swapping out a less-utilized accelerator for a unit that is in greater demand, based

on an internal record of which accelerator utilization statistics. Such a scheme will allow the

hardware to support improvements in performance and efficiency over a wide range of tasks,

as long as there exists an accelerator design for each potential workload.

• We propose a framework to power-adaptively utilize accelerators. Our architecture will mon-

itor the system’s dynamic power usage and accelerator utilization rates. Based on a simple

heuristic function, the system will determine at each moment which accelerators should be

invoked (instead of executing corresponding software functions) and which accelerators should

be configured on-chip, with the goal of optimizing overall efficiency.

• We propose an architecture that is fully-automated at the hardware and system software

levels, such that optimal use of accelerators can be achieved without user intervention. Fur-

thermore, we devise a modular framework for attaching accelerators to our system, so that

any accelerator design that fits our basic requirements can be easily plugged-in and run.

Our proposed architecture includes both the underlying hardware and a software infrastructure.

The remainder of this chapter specifies the details of our hardware implementation on FPGAs; the

following chapter discusses the SOAR software, how it monitors the hardware performance and

executes self-aware decisions about the hardware control and reconfiguration.

29

CHAPTER 4. SOAR ARCHITECTURE

4.2 SoC Design and Implementation

The overall hardware system architecture is shown in Figure 4.1. The SoC includes several com-

ponents including the open-source Rocket core, a set of homegrown RoCC accelerators, L1 and L2

caches, and finally, memory and I/O connection peripherals specified by the Rocket Chip generator

[11] and the lowRISC SoC extension [24].

Figure 4.1: Diagram of the SOAR SoC architecture

4.2.1 Rocket Core and the RoCC Accelerator Interface

The Rocket core is a 5-stage, in-order scalar processor developed at UC Berkeley that has been

released as open-source. The core contains a memory management unit that supports page-based

virtual memory with a translation lookaside buffer (TLB) and page table walker (PTW), a non-

blocking data cache, branch prediction unit, and an optional floating point unit (FPU). Rocket is an

implementation of the RISC-V ISA (RV64G) and supports machine, supervisor and user-privilege

levels to run RISC-V Debian Linux. Rocket’s pipeline diagram is shown in Figure 4.2.

30

CHAPTER 4. SOAR ARCHITECTURE

Figure 4.2: Pipeline Diagram for the Rocket core

Rocket inherently supports the addition of custom accelerators via the Rocket Custom Copro-

cessor (RoCC) interface. As shown in Figure 4.3, the default RoCC interface consists of three signal

groups: command control (CC), register-mode and memory-mode signals. CC signals support co-

ordination between the host and accelerators, such as through indicating whether an accelerator

is currently busy (in the process of a memory request), whether a privileged process is running on

the core, or if the core should be interrupted.

Figure 4.3: RoCC interface, example shown with Bloom filter accelerator

31

CHAPTER 4. SOAR ARCHITECTURE

Register-mode signals can be subdivided into Command and Response signals. Command

signals are used to invoke accelerators and are directly driven by custom RoCC instructions. The

format of RoCC instructions are shown in Figure 4.4: the function bits specify which accelerator

function is being called; source 1 and source 2 hold the source register IDs; instruction flags

indicate whether source and/or destination registers are set to be used; destination is the des-

tination register ID; and finally, the custom opcode is for differentiating between instructions for

different accelerators, in case there are multiple accelerators present. Rocket decodes the instruc-

tion, parses each piece of information mentioned above and issues Command signals which further

include source register data and read-valid signals, indicating whether the Command was valid and

the accelerator is ready to receive a new Command. In turn, Response signals specify the response

from the accelerator back to Rocket and contain the destination register ID and data, as well as

another set of ready-valid signals for synchronization control. In the context of the Rocket pipeline,

communication over Register-mode signals occurs at the very end of the pipeline as noted in Figure

4.2.

31 25 24 20 19 15 14 13 12 11 7 6 0

function source 2 source 1 xd xs1 xs2 destination opcode

instruction flags the custom opcode

Figure 4.4: RoCC Custom Instruction

Memory-mode signals are used by the RoCC accelerator to access the shared L1 data cache.

Memory request signals include the memory address, write data, and an opcode specifying whether

it is a load or a store operation; response signals similarly consist of the memory address and

the data response to the request. As in the case of Register-mode signals, Memory-mode signals

ensure coordination between the cache and accelerator via ready-valid signals. In the extended

RoCC interface, it is further possible to establish communications between accelerators and the L2

cache, PTW, Control Status Register (CSR) and FPU. Such extended interface may be desirable for

complex, large-scale RoCC accelerator designs; however, for reasons discussed later in this Chapter,

we opt to use the default RoCC interface in this work.

4.2.2 lowRISC extension of the Rocket Chip generator

The Rocket Chip generator is the overarching Chisel framework that produces RTL designs of

Rocket-based platforms. Based in Chisel, the Rocket Chip generator utilizes a collection of param-

eterized chip-building libraries to construct custom SoCs that include, not only the Rocket core

and the RoCC interface, but also supporting hardware sub-components including the L1 data and

32

CHAPTER 4. SOAR ARCHITECTURE

instruction caches, L2 caches, memory interface networks and AMBA-compatible I/O connection

peripherals. A block diagram of a system produced by this framework is shown in Figure 4.5.

Figure 4.5: Diagram of the full Rocket SoC produced by the Rocket Chip generator. Figure from [11].

lowRISC further extends the Rocket Chip generator with open-source hardware peripherals

for Ethernet connection, Universal Asynchronous Receiver/Transmitter (UART) connection, FPGA

board-specific display and keyboard connections, and Linux boot-loading through a SD-card reader

[24]. The implementation of the lowRISC system on a Nexys-A7 board is capable of booting RISC-

V Linux kernels with a clock rate of 50 MHz. The SOAR architecture builds upon the lowRISC

system by attaching a set of RoCC accelerators to the hardware and introducing an additional

software system described in Chapter 5. Working with lowRISC presented several challenges,

including that the up-to-date lowRISC SoC release is built on an outdated version of the Rocket

chip. Nonetheless, basing our architecture on lowRISC has proven to be immensely helpful since we

were able to implement the architecture on an physical FPGA, instead of as a software simulation

instance.

33

CHAPTER 4. SOAR ARCHITECTURE

4.2.3 SOAR Accelerators

This section describes a partial collection of homegrown RoCC accelerators we implemented for

SOAR. Indeed, there exist several approaches to designing accelerators: previous research mostly

demonstrates application-level accelerators, such as neural net processing units, since these large-

scale accelerators can carry out involved computations and return significant performance gains;

other works have devised toolchains that profile target software applications and auto-generate

hardware units. In this work, we instead focus on building accelerators for fine-grained kernels and

functions, such as hashing and string operations. There are four major reasons behind our design

choice:

• Fine-grained accelerators are more appropriate for our adaptive, customizable architecture.

It is more optimal to tailor the on-chip hardware with a large number of small units than

with a few, large accelerators.

• The current implementation of the Rocket Chip generator does not support context-switching

in RoCC accelerators. Explicit page pinning is required for large-scale accelerators, otherwise

the hardware units may loose context during their command executions. Developing RoCC

accelerators with such capabilities [13] is outside the scope of this work.

• The current implementation of RoCC does not allow Rocket and another co-processor to

execute instructions simultaneously. That is, whenever a RoCC command is issued to invoke

an accelerator, the host CPU itself is stalled until the RoCC interface returns response signals

indicating the command has been completed. Building a more efficient, parallelized host-

accelerator interface would be an interesting direction future research can pursue; more details

are explained in Chapter 7.

• Small accelerators are easier to implement and verify. This approach follows RISC-V’s over-

arching emphasis on the Agile hardware development methodology and allows a small team

of developers to produce a number of effective accelerators over a short period of time. We

further hope that releasing this work as open-source will motivate various parties to also par-

take in developing their own list of compatible accelerators; focusing on small units will make

such design efforts more manageable and will allow future iterations of SOAR to benefit from

having a wider pool of available accelerator designs.

The remainder of this section provides information about some of the functions we developed

34

CHAPTER 4. SOAR ARCHITECTURE

RoCC accelerators for. Functions listed here are Bloom filter operations, combinatorial sequence

generation, string copy and string comparison; not included are square-root computations, sorting

and Secure Hashing Algorithms (SHA-2). For the sake of brevity, we only list the C implementations

in this chapter; corresponding Chisel code can be found in Appendix B.

Bloom filter operations

Bloom filters (BFs) are space-efficient, probabilistic data structures that offer constant-time

membership querying. Due to their efficiencies, Bloom filters have been widely adapted in various

application domains, from database systems to networks and security. In this work, we specifically

consider Bloom filters for string matching on large text files. We consider the two main operations,

mapping (inserting) an element to the Bloom filter and testing (querying) a word had previously

been mapped to the filter. As an example, Listing 4.1 shows the implementation of the map function

in C.

1 /*

2 * Map word to Bloom filter.

3 * Places 1 in filter at indices that given word maps to.

4 */

5 void mapToBloom(unsigned char *filter , char *word)

6 {

7 long *hashes = (long *) calloc(K_NUM_HASH , sizeof(long));

8 hash(hashes , word);

9

10 // set the bits at the hash value indices to 1

11 for (int i = 0; i < K_NUM_HASH; i++)

12 {

13 filter[hashes[i]] = 1;

14 }

15 }

16

17 void hash(long *hashes , char *word)

18 {

19 unsigned long x = hashstring(word);

20 unsigned long y = x >> 4;

21

22 for (int i = 0; i < K_NUM_HASH; i++)

23 {

24 x = (x + y) % M_NUM_BITS; // ith hash value

25 y = (y + i) % M_NUM_BITS; // displacement

35

CHAPTER 4. SOAR ARCHITECTURE

26 hashes[i] = x;

27

28 }

Listing 4.1: Bloom filter map operation implemented in C

Combinatorial sequence generation

Combinatorial sequence generation is a key operation for hardware-level randomization and

cryptographic applications. Most notably, loop-less generation of bit patterns is an effective way to

produce interesting combinatorial sequences. In this work, we implement accelerators to speed up

the algorithms using successor rules, implemented by Knuth [25] and Stevens and Williams [26].

As an example, Listing 4.2 depicts the C implementation of Knuth’s fixed-weight binary string

generation algorithm.

1 int nextWeightedCombination(long n, unsigned long last , unsigned int *out) {

2 unsigned long next , temp;

3 next = last & (last + 1);

4 temp = next ^ (next - 1);

5

6 next = temp + 1;

7 temp = temp & last;

8

9 next = (next & last) - 1;

10 next = (next < 0x8000000000000000)? next : 0;

11 next = last + temp - next;

12

13 if(next / (1L << n) != 0) { return -1; }

14 *out = next % (1L << n);

15 return 1;

16 }

Listing 4.2: Knuth’s fixed weight binary string generation implemented in C

String Copy

String copy is a fundamental operation that copies a character string from one memory address

to another. Due to its such prevalent use, this function is an ideal candidate for one of our target

accelerators for optimizing performance against general-purpose workloads. Listing 4.3. lists a

36

CHAPTER 4. SOAR ARCHITECTURE

typical implementation of strcpy in C.

1

2 char * strcpy(char *strDest , const char *strSrc)

3 {

4 char *strTemp = strDest;

5 while(* strDest ++ = *strSrc ++);

6 return strTemp;

7 }

Listing 4.3: strcpy implemented in C

String Comparison

String comparison is another typical operation frequently used in various workloads. The

function compares two character strings and returns the lexicographic difference. Listing 4.4. shows

a typical C implementation of strcmp.

1 int swstrcmp(const char* s1 , const char* s2)

2 {

3 unsigned char c1, c2;

4

5 do {

6 c1 = *s1++;

7 c2 = *s2++;

8 } while (c1 != 0 && c1 == c2);

9

10 return c1 - c2;

11 }

Listing 4.4: strcmp implemented in C

4.3 Summary

The SOAR hardware architecture consists of a single host Rocket core, a list of RoCC accelerators

and various peripherals supporting the memory hierarchy and I/O connections. The RoCC interface

provides an effective and manageable way to design custom hardware units that is compatible with

37

CHAPTER 4. SOAR ARCHITECTURE

Rocket. As long as the design meets the basic requirements for the interface, any accelerator can

be interchangably attached to Rocket, thus be utilized as part of the SOAR architecture. The full

SOAR architecture configured on Xilinx Aritx-7 FPGA is able to boot RISC-V Debian Linux from

the SD-card and can communicate with other machines over Ethernet connection. Now that we

have specified the hardware infrastructure implemented on reconfigurable hardware, we describe

the software framework for adaptive and easy-to-use control of accelerators in the following chapter.

38

5. Framework for Adaptive Utilization

of Accelerators

In this chapter, we describe the software stack that lies on top of the hardware described in Chapter

4, an additional layer that will enable SOAR to make self-aware decisions about how to optimally

use its accelerators. The SOAR software handles the invocation of function calls, both in hardware

and in software, gauges dynamic power demands, and determines which set of accelerators should

be configured and activated at each time. Ideally, all of these operations should be carried out

in hardware to further reduce performance and power overhead. Hence, in upcoming iterations

of SOAR, we expect to integrate our support software into the underlying hardware architecture

itself. More details on future directions are found in Chapter 7.

5.1 Support for Dynamic Dispatch

Given a list of accelerator-implemented functions, we need to be able to execute each function both

in hardware and in software. As proposed, SOAR does not keep a hard-wired list of accelerators

that are utilized each and every time. Instead, the system invokes an accelerator only when the unit

is both configured and activated, which occurs once SOAR has determined it is most advantageous

to do so. In any other case, whenever the functions is called, SOAR will execute the function

via a software library call. This seamless transitioning between HW-SW execution modes through

dynamic dispatch allows our system to benefit from efficient hardware-software collaboration.

The SOAR software first implements a top-level wrapper function for each accelerator; the

wrapper then uses simple if-else control logic to invoke either the hardware or software imple-

mentation. Decisions about dynamic dispatch are based on a metadata array that is described

below in Table 5.1.

39

CHAPTER 5. FRAMEWORK FOR ADAPTIVE UTILIZATION OF ACCELERATORS

Name Data Type Description Config Type

index int Index in the entire list of accelerator functions Static

customId int Index in the current HW configuration Dynamic (CT)

hw avail int Whether accelerator is currently configured on-chip Dynamic (CT)

hw on int Whether accelerator is currently decided to be used Dynamic (RT)

hw fun void * Pointer to hardware function call Static

sw fun void * Pointer to software function call Static

speed reward int Pre-calculated performance gains Static

power reward int Pre-calculated power savings Static

count int Combined HW-SW function invocation count Dynamic (RT)

Table 5.1: Fields in each accelerator metadata. CT indicates hardware compile-time; RT stands

for run-time.

Each element in the array corresponds to a packet of metadata for each accelerator. The first

parameter, index, marks the location of the accelerator within the entire list of accelerators. On the

other hand, customId notes the location in the currently configured array of on-chip accelerators.

hw avail is the parameter indicating whether the accelerator is currently configured on-chip, and

hw on indicates whether the accelerator should be used or not. hw fun and sw fun are function

pointers to the hardware and software implementations. While the hardware activation variables

are dynamically configured, the function implementations themselves are fixed at development-

stage. Hardware methods are implemented using in-line assembly instructions invoking custom

RoCC instructions, and the software methods are the corresponding C implementations described

in Section 4.2.2. Finally, the speed and power rewards are pre-computed performance and power-

efficiency results, averaged over multiple runs, and the count variable records the number of times

an accelerator function has been called, either in hardware or in software.

5.2 Determining the Working Set of Accelerators

As discussed, the run-time selection between HW-SW execution depends on the metadata param-

eter hw on. To build a fully adaptive system, however, we also require that this parameter to be

updated at run-time, according to changes in the running workload and power budget. Therefore,

SOAR periodically executes a self-evaluation process to determine what is the current working set

of accelerators. Similar to its original meaning in operating systems, we define a working set of

accelerators to be the “optimal collection of activated accelerators referenced by a running process

40

CHAPTER 5. FRAMEWORK FOR ADAPTIVE UTILIZATION OF ACCELERATORS

during a given time interval.”

Calculating this working set is completed in two steps: first, the system gauges the run-time

power consumption and the frequency at which each accelerator function has been invoked, either

in hardware or in software. Next, based on the measured data and pre-calculated speed reward

and power reward value, the system determines (1) whether each on-chip available accelerator

should be activated or not and (2) whether any of the configured accelerators should be exchanged

for a more useful unit. The mechanism for comparing the use of different accelerators is based

on the user-defined heuristic function. Hence, SOAR can be personalized to work towards either

optimized performance or energy-efficiency—or any other goal the user sets.

Note that the process of determining the working set is itself an expensive operation that cannot

be executed frequently. While the dispatch mechanism is invoked every time an accelerator function

is called by the running workload, the SOAR updates the accelerator activation parameters (hw on)

only once every minute (60 seconds) and reasons about hardware reconfiguration every five minutes

(300 seconds). Given a large enough time frame, we expect that the overhead of computing the

working set will be amortized over hundreds of millions of optimized operations SOAR will execute

during the same time frame.

5.2.1 Power and Usage Monitoring

Monitoring dynamic power consumption is key to making self-aware decisions about improving

energy-efficiency. If the system is already drawing too much power, SOAR will attempt to configure

and activate accelerators with higher power rewards. Ideally, we would measure the accurate

power demands of the FPGA via direct hardware instrumentation tools, yet we have not had the

opportunity to fully explore this possibility in this work. We hope to explore direct hardware-based

power instrumentation in the future, as we discuss more in Chapter 7. For this version of SOAR,

we instead use the values from the Linux loadavg kernel as a proxy for power consumption.

The Linux load average kernel calculates the current number of processes either in the running

(R) or waiting (D) states. In a single threaded system, a low value from loadavg reasonably

corresponds to a situation where the system is mostly idle, and while the operating system is idle,

RISC-V Linux directs the processor to enter its power-saving mode. In this state, the processor

is stalled with the wfi (wait for interrupt) instruction and most of the core is gated off, hence

saving dynamic power that would have otherwise been dissipated through switching transistors. In

our current implementation of the SOAR software, the loadavg kernel is invoked every minute,

interrupting the current workload; the system records the readings to the metadata array and feeds

information to the heuristic function. We have also explored the possibility of directly counting

41

CHAPTER 5. FRAMEWORK FOR ADAPTIVE UTILIZATION OF ACCELERATORS

the number of cycles spent on executing wfi instructions at the hardware level, through adding

an extra counter to Rocket CSR. This method would have allowed us to measure the frequency of

processor stalling without having to undergo kernel swaps every minute. Unfortunately, wfi cycle

counting has been unsuccessful when tested on our physical FPGA implementation, so we decide

to use the Linux kernel for power measurements.

As mentioned earlier when discussing Table 5.1, the SOAR software keeps a counter for each

accelerator in the metadata array. Unlike power monitoring, updating the counters do not incur

any kernel invocations and can be executed without much overhead. Therefore, SOAR updates

the counters each and every time an accelerator function is execute. Also, in order to respond to

situations where the workload characteristics drastically change over time, all counters are reset to

zero every five minutes.

5.2.2 Heuristic-based Customization

SOAR operates with a user-given heuristic to determine the working set of accelerators. We pur-

posefully design our system to be goal-agnostic, such that the use of accelerators can be tailored

towards any goal defined by the user. Here, however, we consider the specific case of optimizing

performance under a specific power budget as an example to illustrate how the heuristic function

might be designed.

Since most accelerators improve performance (speed reward), SOAR will default to activat-

ing (hw on) all accelerators that are currently configured on-chip (hw avail). Readings from the

power monitor will check if the defined power budget is being met: if so, hw on and hw avail will

not be changed; otherwise, SOAR will de-activate any accelerators with negative power rewards

(power reward). As mentioned above, re-evaluation of accelerator activation takes place every 60

seconds.

Over 300 second intervals, SOAR also determines the potential need for hardware reconfigura-

tion. Suppose the on-chip area limit is up to two accelerators at a time. Reviewing the count pa-

rameters in the metadata array, SOAR will list the two most highly demanded accelerator functions.

If those two accelerators differ from what is currently configured on-chip, then SOAR computes

the product of speed reward and function invocation frequency for each accelerator and compares

the products. If a non-configured unit scores higher than a current on-chip unit, then SOAR

prints to stdout how the hardware should be reconfigured. Ideally, partial reconfiguration will

take place when such need is noticed, yet this process has not been included as part of our current

implementation. Potential improvements on the SOAR design are fully discussed in Chapter 7.

42

CHAPTER 5. FRAMEWORK FOR ADAPTIVE UTILIZATION OF ACCELERATORS

5.3 Summary

The SOAR software infrastructure is designed to support two major operations: (1) switching be-

tween hardware and software function execution via dynamic dispatch and (2) adaptively adjusting

the system accelerator usage policies via determining the working set of accelerators. Recording

accelerator configuration parameters in a metadata array has allowed our system to be scalable

and manageable, since we only need to extend the metadata array to integrate additional RoCC

accelerators into the architecture. We also highlight the fact that this library does not require any

inputs from the user besides the heuristic for comparing the utilities of accelerators. Furthermore,

the heuristic function can be specified in any form, allowing SOAR to customize the system towards

arbitrary optimization goals. Operations carried out by the SOAR software does introduce perfor-

mance and power consumption costs, yet in the end, we expect that the returns from optimized

use of accelerators can significantly outweigh such overheads.

43

6. Evaluation

In this chapter, we evaluate the performance and energy-efficiency of our proposed architecture. We

describe the methodology, tools and benchmarks that were used in our measurements and report

the final results.

6.1 Methodology

To demonstrate the effectiveness of our proposed system, we measure the speed-up and power

savings of the full SOAR architecture relative to the default Rocket implementation. The difference

between the two versions is that SOAR additionally contains a set of on-chip RoCC accelerators

and it makes use of those accelerators through the software system described in Chapter 7. The

rest of the two designs are identical, including that we implement both RTL on Xilinx Artix-7

FPGA, as part of the Digilent Nexys-A7 board.

The benchmarks we use are the following accelerator functions: Bloom filter operations, binary

string generation, strcpy and strcmp. When calling these functions, SOAR decides between exe-

cuting in software or invoking one of the hardware accelerators, whereas the default implementation

always runs in software. We compare the performance and power consumption between these two

cases. Though it is reasonable to conduct the measurements bare-metal, we specifically choose to

measure the system efficiencies while running RISC-V Debian Linux, since we expect that most

real-world users will be making use of SOAR along with a reasonable operating system.

6.2 Hardware Utilization

Before discussing performance and power efficiency, we briefly report how SOAR utilizes FPGA

hardware components, compared to the default Rocket core. As mentioned, the only difference

between the two hardware architectures is that SOAR has several additional RoCC accelerators.

The total number of accelerators units included in SOAR can vary as long as the FPGA has enough

44

CHAPTER 6. EVALUATION

hardware resources to implement the full RTL design. The example shown in Table 6.1 lists the

hardware utilization of a SOAR architecture that has been configured with the four accelerators

described in Chapter 4. The table shows that the hardware resources required for RoCC accelerators

are far less than what is required for the rest of the host CPU. The full Linux-booting system,

including IO and memory peripherals, currently occupies about 88% of total LUTs available on

Aritx-7 XC7A100T-1CSG324C. Given that each of accelerators require 1 6% of the LUTs, we can

conclude that most commercial FPGAs are able to support a SOAR implementation at least 6 to

12 fine-grained RoCC accelerators.

LUTs FFs BRAMs DSP48

Total Available 63400 126800 135 240

Rocket 39998 (63.1%) 23754 (18.7%) 65 (48.1%) 15 (6.25%)

Bloom 3626 (5.72%) 267 (0.21%) 0 0

Combinations 3225 (5.09%) 400 (0.32%) 0 0

Strcpy 221 (0.35%) 99 (0.08%) 0 0

Strcmp 137 (0.22%) 34 (0.03%) 0 0

Table 6.1: Summary of SOAR hardware utilization

6.3 Performance Results

Performance was measured in physical hardware time via the gettimeofday system call. Measuring

with actual time is a much more accurate way to gauge system performance than counting the

number of instruction cycles spent on . Although each standard RISC-V instruction is designed to

consume a single clock cycle, custom RoCC instructions, on the other hand, may take multiple cycles

to execute. gettimeofday provides a direct and manageable way to measure physical time, and

by looping through the benchmark functions millions of times, we bring up the total measurement

time interval up to several minutes. This approach secures greater accuracy in our measurements.

Table 6.2 summarizes the average operations per second when executing each of the functions

supported by the combinatorial sequence generation accelerator, both in hardware and in software.

For 16-bit binary strings, we see that the fixed-weight and ranged combination generation are

accelerated using hardware; however, for general combinations, we see that running the function on

hardware is actually slower than running in software. General combinations is thus an interesting

45

CHAPTER 6. EVALUATION

example of a case where using hardware may potentially improve power savings but at the cost of

negatively impacting performance.

Software Hardware Relative Speed-up

Fixed-Weight Combinations 39.36 147.12 3.74×
General Combinations 5.91 3.67 0.62×
Ranged Combinations 4.67 48.32 10.4×

Table 6.2: Executed operations per second for each function of the combinatorial sequence gener-

ation accelerator, when generating 16-bit-wide binary sequences.

6.4 Energy-Efficiency Results

Power measurements of an FPGA is itself a challenging task. While we have been unable to

find appropriate instrumentation tools to specifically measure power consumption of the FPGA

chip, we have measured the gross power consumption rate of the entire FPGA board using the

P3 P4400 Kill-A-Watt Electricity Usage Monitor. The Kill-A-Watt device provides up to three

significant figures on the average power consumption rates in kilowatts per hour. For accurate

measurements, we executed benchmark workloads in an infinite loop, so that the FPGA can run

the workload overnight–after about 24 hours, we terminated the running process and recorded the

power consumption rate readings.

Software Hardware

Ops per Second 4.67 48.32

Power Consumption 0.04 KWH 0.025 KWH

Energy-Delay Product 510 µJ·s 3.0 µJ·s

Table 6.3: Energy-efficiency measurement results for the number-theoretic sequence generation

accelerator, when generating ranged combinations

In general, we suspect that using hardware helps reduce energy consumption. Unfortunately,

we have only been able to test our hypothesis against a specific case: we measured the power-

46

CHAPTER 6. EVALUATION

efficiencies of ranged combination generations using hardware and in software. The results are

shown in Table 6.3. We notice that the hardware is capable of speeding up the operation by

10× while consuming less power. The energy-delay product (EDP), a measure of energy-efficiency

frequently used in characterizing microarchitecture, is defined as

EDP = Pavg × (∆T)2 = Avg Power Consumption (Watts)×
(

Elapsed Time (s)

Elapsed Loop Count

)2

.

EDP calculations indicate that hardware generation of ranged combinations is about 170×
more efficient than the software implementation.

6.5 Summary

Our evaluation of SOAR hardware utilization suggests that the architecture can support 6 to 12

RoCC accelerators at the same time, even when implemented on a moderate, commercial-grade

FPGA. Performance and power-efficiency measurements, albeit incomplete and require further

analyses, indicate that most of our accelerators significantly improve performance, if not also reduce

dynamic power consumption, compared to equivalent software implementations. In future research

endeavors, we look forward to seeing further evaluations of the heuristic-based reconfiguration of

accelerators and its impact on SOAR performance and energy-efficiency.

47

7. Future Work

The SOAR architecture described in the previous chapters is a first step towards a fully self-

optimizing SoC that can adaptively tailor its hardware to the running program and time-varying

efficiency requirements. As mentioned several times, there are many directions in which future

works may improve our current implementation. Here, we discuss some of the potential research

questions.

7.1 Improvements on the Hardware Architecture

7.1.1 Diversifying the Collection of Accelerators

An immediate extension of this work is to develop an SoC with more RoCC accelerators. One of

the greatest advantages of the SOAR design is that the system can operate with a large pool of

accelerators, while the system itself will automatically choose the optimal set of units to configure

and activate on-chip. In other words, with more accelerators available, SOAR can deliver better

efficiencies over diverse applications. As mentioned in Chapters 3 and 4, developing a small, fine-

grained accelerator like our examples is not a daunting task thanks to the wealth of open-source

RISC-V hardware development tools. For instance, both Chisel and the Rocket Chip generator are

specifically designed to ease the burden of designing RoCC accelerators. We thus anticipate that

many exciting accelerators can be designed and deployed onto SOAR in the near future.

7.1.2 Further Investigating the Host-Accelerator Memory Interface

The default RoCC interface allows the accelerators to share the L1 data cache with Rocket. At

the moment, our accelerators can successfully execute memory requests and responses during RTL

simulations via Verilator, but performing memory operations on the physical FPGA implementation

results in a complete system failure. We currently do not understand where the error comes from,

yet we suspect that the synchronization over the RoCC memory interface is not properly configured

48

CHAPTER 7. FUTURE WORK

on hardware. Along with debugging, we also hope to explore if there are more efficient methods for

transferring data between Rocket and accelerators, even perhaps between the accelerators. Memory

coherence and consistency for such heterogeneous SoCs are interesting open-ended research topics.

7.1.3 Replacing the Software Infrastructure with Integrated Hardware Units

In Chapter 5, we mentioned how the SOAR software infrastructure can incur significant overheads.

Operations performed the software, including monitoring power consumption and determining the

working set of accelerators, are all tasks that involve the use of Linux kernels, which are bound to

interrupt the running program; however, it is also necessary to continue executing these functions

in order to maintain the functionality of the SOAR design. We bring here again the notion that

hardware is often more efficient than software in executing the same set of tasks. Using hardware is

even more advantageous when we have full knowledge of which specific operations the circuit should

handle. Therefore, to truly optimize SOAR, one may consider replacing the current SOAR software

framework with corresponding hardware units, integrating them into the architecture described in

Chapter 4.

For example, power monitoring may be improved by using an actual printed circuit board

(PCB) attachment that can directly measure the analog power consumption rates of the FPGA.

Readings can be fed back to the FPGA through an analog-to-digital converter. Similarly, accel-

erator utilization monitoring can be done using custom Control Status Registers (CSRs) within

Rocket. Signals from the Rocket instruction decoder can be designed to trigger specific registers to

count each time a RoCC instruction has been executed. As such, we can imagine various ways to

implement hardware designs to carry out the operations currently handled in software.

7.1.4 Designing a Custom Compiler

Another way to improve SOAR is through adding a gcc-extended compiler that can identify function

calls in the source code and compile into SOAR-specific instructions. In the current implementation,

we have only been working with C implementation code that we wrote alongside the accelerators—

to use the SOAR software framework, accelerator wrapper functions must be manually placed in

the source code. Designing a custom compiler will be a meaningful project in that it will spare the

burden of users during the application development process and will also allow users to bring any

C source code to run on SOAR.

49

CHAPTER 7. FUTURE WORK

7.1.5 Incorporating Partial Reconfiguration into SOAR

Partial Reconfiguration (PR) can be a powerful addition to the SOAR system. Offered by higher-

end commercial FPGAs, PR allows the hardware to re-configure a particular portion of itself at

run-time, therefore being able to run the rest of the implemented design while a part of the chip

is getting updated. Applying PR to SOAR will allow the system to execute the recommended

changes to the on-chip configuration of accelerators at run-time, instead of at some later compile-

time. This offers a higher-degree of dynamic customization and will bring the architecture closer

to a fully self-optimizing hardware architecture.

7.2 Improvements on Performance and Power Measurements

In this work, we have analyzed how our set of RoCC accelerators offer speed-ups and energy

savings. Experimental results show that wisely using these accelerators can significantly improve

the efficiencies of running various applications. The next step in understanding the promise of

SOAR is to analyze how the self-aware optimization process can further contribute to improving

system efficiency, over a wide range of benchmarks. An example would be an experiment where we

run a mixture of well-known benchmarks such as the applications in SPECint and track (1) how

SOAR determines the working set of accelerators and suggests hardware to be reconfigured and (2)

whether SOAR improves energy-efficiency more than a SoC with a fixed-set of accelerators.

50

8. Conclusion

Power-efficiency has become a key design constraint, as the prevalence of dark silicon continues to

grow in modern processors. In response to tightening on-chip power budgets, computer architects

have pointed at specialization of hardware, through the use of DSAs such as accelerators, to extend

the scaling of system performance. This work is a continuation of such endeavors towards building

a high-performance, power-efficient SoC based on accelerators. However, the SOAR system differ-

entiates itself from previous SoC designs in that it explores how to perform optimally not only over

a few specialized tasks, but also for a wide range of general-purpose workloads. SOAR presents an

automated framework for adaptively controlling the use of accelerators and tailoring the hardware

to the running program.

In this work, we have implemented a full-scale, RISC-V SoC based on the lowRISC extension of

the Rocket Chip generator. Using Chisel HDL, we explored an approach for designing modular ac-

celerators that allows less-experienced hardware developers to easily generate special-purpose units.

We implemented several of such homegrown accelerators and attached them to our SoC through

the RoCC interface. The entire architecture was implemented on a Xilinx Artix-7 FPGA and is

capable of invoking individual accelerators while booting RISC-V Linux. Finally, we introduced

a software infrastructure based on dynamic dispatch to seamlessly switch code execution between

hardware and software. We demonstrated a flexible framework that allows any heuristic function

to be applied to determining the working set of accelerators.

Experiments described in Chapter 6 indicate that our collection of RoCC accelerators can

significantly improve performance and energy-efficiency. Attaching more accelerators to SOAR

will allow SOAR to choose from a larger pool of potential hardware units and become even more

efficient. Unfortunately, we have not been able to include efficiency evaluations of the heuristic-

based working set determination as part of this thesis. By completing such analyses and exploring

the various topics mentioned in Chapter 7, we expect future iterations of SOAR to become the

fully reconfigurable, adaptive and easy-to-use system we have proposed in this work.

51

Appendix A. Acronyms

ASIC application specific integrated circuits (ASICs) are integrated circuits designed for a partic-

ular application. They generally cannot be used for other purposes.

BRAM block RAMs that are placed on an FPGA fabric to provide more efficient memory storage

for FPGA circuits.

CPU the central processing unit (CPU) performs the instructions of a computer program.

DSP Digital Signal Processor are hardware units on Xilinx FPGAs responsible for fast and efficient

multiplication and addition.

FPGA field programmable gate arrays (FPGAs) are integrated circuits that can be reconfigured

after they have been manufactured.

GPP general purpose processors (GPPs) are processors that can be used for a wide variety of

programs and applications.

IP intellectual property (IP) cores are how Xilinx defines the individual hardware blocks that can

be implemented on their FPGAs.

LUT look-up tables (LUTs) replace computation with indexing into a stored data array. Most

computation on FPGAs is implemented through select lines that index into LUTs to encode

boolean logic functions.

RAM random access memory (RAM) is a type of data storage in which read and write times are

independent of order of access.

VHDL VHSIC Hardware Description Language (VHDL) is a hardware description language used

to define digital systems and integrated circuits. VHDL and Verilog are the two most widely

used hardware description languages.

52

CHAPTER 8. CONCLUSION

53

Appendix B.

Chisel Code for RoCC Accelerators

1 // RoCC Bloom filter accelerator

2 class BloomAccel (implicit p: Parameters) extends LazyRoCC {

3 override lazy val module = new BloomAccelImp(this)

4 }

5

6 class BloomAccelImp(outer: BloomAccel) extends LazyRoCCModule(outer) with

HasCoreParameters {

7 // accelerator memory

8 val bloom_bit_array = RegInit(Vec(Seq.fill (20000) (0.U(1.W))))

9 val miss_counter = RegInit (0.U(64.W))

10 // val busy = RegInit(Bool(false))

11

12 val cmd = Queue(io.cmd)

13 val funct = cmd.bits.inst.funct

14 val hashed_string = cmd.bits.rs1

15

16 // decode RoCC custom function

17 val doInit = funct === UInt (0)

18 val doMap = funct === UInt (1)

19 val doTest = funct === UInt (2)

20

21

22 // Hash computation

23 val x0 = Wire(UInt())

24 val y0 = Wire(UInt())

25

26 val x1 = Wire(UInt())

27 val y1 = Wire(UInt())

54

CHAPTER 8. CONCLUSION

28

29 val x2 = Wire(UInt())

30 val y2 = Wire(UInt())

31

32 val x3 = Wire(UInt())

33 val y3 = Wire(UInt())

34

35 val x4 = Wire(UInt())

36 val y4 = Wire(UInt())

37

38 val x5 = Wire(UInt())

39 val y5 = Wire(UInt())

40

41 x0 := hashed_string

42 y0 := hashed_string >> 4

43

44 x1 := (x0 + y0) % 20000.U(64.W)

45 y1 := (y0 + 0.U(64.W)) % 20000.U(64.W)

46 n

47 x2 := (x1 + y1) % 20000.U(64.W)

48 y2 := (y1 + 1.U(64.W)) % 20000.U(64.W)

49

50 x3 := (x2 + y2) % 20000.U(64.W)

51 y3 := (y2 + 2.U(64.W)) % 20000.U(64.W)

52

53 x4 := (x3 + y3) % 20000.U(64.W)

54 y4 := (y3 + 3.U(64.W)) % 20000.U(64.W)

55

56 x5 := (x4 + y4) % 20000.U(64.W)

57 y5 := (y4 + 4.U(64.W)) % 20000.U(64.W)

58

59 val found1 = Wire(UInt())

60 val found2 = Wire(UInt())

61 val found3 = Wire(UInt())

62 val found4 = Wire(UInt())

63 val found5 = Wire(UInt())

64

65 found1 := bloom_bit_array(x1)

66 found2 := bloom_bit_array(x2)

67 found3 := bloom_bit_array(x3)

68 found4 := bloom_bit_array(x4)

69 found5 := bloom_bit_array(x5)

55

CHAPTER 8. CONCLUSION

70

71 // Custom function behaviors

72 when (cmd.fire()) {

73 when (doInit) {

74 bloom_bit_array := Reg(init = Vec.fill (20000) (0.U(1.W)))

75 miss_counter := RegInit (0.U(64.W))

76 // fresh := Bool(true)

77 }

78 when (doMap) {

79 bloom_bit_array(x1) := 1.U(1.W)

80 bloom_bit_array(x2) := 1.U(1.W)

81 bloom_bit_array(x3) := 1.U(1.W)

82 bloom_bit_array(x4) := 1.U(1.W)

83 bloom_bit_array(x5) := 1.U(1.W)

84 }

85 when (doTest) {

86 miss_counter := miss_counter + ~(found1 & found2 & found3 & found4 & found5)

87 }

88 }

89

90 // PROCESSOR RESPONSE INTERFACE

91 // Control for communicate accelerator response back to host processor

92 val doResp = cmd.bits.inst.xd

93 val stallResp = doResp && !io.resp.ready

94

95 cmd.ready := !stallResp

96 // Command resolved if no stalls AND not issuing a load that will need a

request

97 io.resp.valid := cmd.valid && doResp

98 // Valid response if valid command , need a response , and no stalls

99 io.resp.bits.rd := cmd.bits.inst.rd

100 // Write to specified destination register address

101 // io.resp.bits.data := bloom_bit_array (7081.U(64.W))*1000.U(64.W) +

bloom_bit_array (9951.U(64.W))*100.U(64.W)

102 io.resp.bits.data := miss_counter

103 // io.resp.bits.data := Mux(doMap , debug , miss_counter)

104 // Send out

105 io.busy := cmd.valid

106 // Be busy when have pending memory requests or committed possibility of

pending requests

107 io.interrupt := Bool(false)

108 // Set this true to trigger an interrupt on the processor (not the case for

56

CHAPTER 8. CONCLUSION

our current simplified implementation)

109 }

Listing 8.1: RoCC Bloom filter accelerator implemented in Chisel

1

2 // RoCC accelerator for number -theoretic seqeunce generation

3 class Combinations(implicit p: Parameters) extends LazyRoCC {

4 override lazy val module = new CombinationsImp(this)

5 }

6

7 //Main accelerator class , directs instruction inputs to functions for computation

8 class CombinationsImp(outer: Combinations)(implicit p: Parameters) extends

LazyRoCCModule(outer) with HasCoreParameters{

9 // Accelerator states: idle , busy (accessing memory), resp (sending response)

10 val s_idle :: s_busy :: s_resp :: Nil = Enum(Bits(), 3)

11 val state = Reg(init = s_idle) // State idle until handling an instruction

12 val tryStore = state === s_busy

13

14 // Instruction inputs

15 val length = Reg(init = io.cmd.bits.rs1) // Length of binary string

16 val previous = Reg(init = io.cmd.bits.rs2) // Previous binary string

17 val rd = Reg(init = io.cmd.bits.inst.rd) // Output location

18 val function = Reg(init = io.cmd.bits.inst.funct) // Specific operation

19 val currentAddress = Reg(UInt (64.W)) //The address to use for memory stores

20 //Always -updated versions of the inputs

21 val fastLength = Mux(io.cmd.fire(), io.cmd.bits.rs1 , length)

22 val fastPrevious = Mux(io.cmd.fire(), io.cmd.bits.rs2 , previous)

23

24 // Answers for each function: FixedWeight , General , Ranged , then memory

versions of each (functions 0-6)

25 val outputs = Array(nextCombination.fixedWeight(fastLength (5,0), fastPrevious)

, nextCombination.generalCombinations(fastLength (5,0), fastPrevious),

nextCombination.rangedCombinations(fastLength (5,0), fastPrevious , fastLength

(11,6), fastLength (17 ,12)))

26

27 // Command and response states

28 io.cmd.ready := state === s_idle

29 io.resp.valid := state === s_resp

30

31 // Accelerator response data

32 val summedReturns = Reg(init = 0.U(64.W))

33 //For a 3-bit function code , bit 2 sets whether memory is used or not , and

57

CHAPTER 8. CONCLUSION

bits 1 and 0 set which combination to use

34 val lookups = Array (0.U->outputs (0) ,1.U->outputs (1), 2.U->outputs (2),

35 4.U->summedReturns , 5.U->summedReturns , 6.U->summedReturns)

36 io.resp.bits.data := MuxLookup(function , outputs (0), lookups)

37 io.resp.bits.rd := rd

38

39

40 //State control

41 //Setup for processing commands

42 when(io.cmd.fire()) {

43 // Capture inputs

44 length := io.cmd.bits.rs1

45 rd := io.cmd.bits.inst.rd

46 function := io.cmd.bits.inst.funct

47

48 // Whether it’s a memory -using instruction or not (bit 2 set in the

function code)

49 when(io.cmd.bits.inst.funct (2)===1.U) {

50 state := s_busy

51 summedReturns := 0.U

52 currentAddress := io.cmd.bits.rs2

53 } .otherwise {

54 previous := io.cmd.bits.rs2

55 state := s_resp

56 }

57 }

58

59 //When done with an instruction

60 when(io.resp.fire()) {

61 state := s_idle

62 }

63

64

65 //Memory -access state

66 val memAccesses = Reg(init = 0.U(4.W)) // Whether all memory requests have been

resolved

67 val accessesChange = Wire(UInt (4.W))

68 accessesChange := (io.mem.req.fire() & 1.U(4.W)) - (io.mem.resp.valid & 1.U(4.

W))//The latest amount of memory accesses either started or finished

69

70 // Source of new combination data

71 val nextCombinations = Array(memoryAccess.cycleCombinations(fastLength , io.mem

58

CHAPTER 8. CONCLUSION

.req.fire(), io.cmd.fire(), 0), memoryAccess.cycleCombinations(fastLength , io.

mem.req.fire(), io.cmd.fire(), 1), memoryAccess.cycleCombinations(fastLength ,

io.mem.req.fire(), io.cmd.fire(), 2))

72 val memLookups = Array (0.U -> nextCombinations (0), 1.U -> nextCombinations (1),

2.U -> nextCombinations (2))

73 val combinationStream = Wire(UInt (64.W))

74 combinationStream := MuxLookup(function (1,0), nextCombinations (0), memLookups)

75

76 // Request and response controls

77 //When a request is sent , set up next cycle ’s response data

78 when(io.mem.req.fire()) {

79 memAccesses := memAccesses + accessesChange

80 currentAddress := currentAddress + 8.U

81 printf("next: %x address %x mem: %x\n", combinationStream , currentAddress ,

memAccesses)

82 }

83

84 //When a response is received , save response data

85 when(io.mem.resp.valid) {

86 memAccesses := memAccesses + accessesChange

87 summedReturns := summedReturns + io.mem.resp.bits.data

88 printf("tag: %x addr: %x mem %x\n", io.mem.resp.bits.tag , io.mem.resp.bits

.addr , memAccesses)

89 }

90

91

92 // Controls for accessing memory

93 val cycleOver = combinationStream === nextCombination.doneSignal

94 val finished = cycleOver //&& memAccesses === 0.U

95

96 // Switch out of memory mode when finished

97 when(tryStore && finished) {

98 state := s_resp

99 }

100

101 // Memory request interface

102 io.mem.req.valid := tryStore && !cycleOver

103 io.busy := tryStore

104 io.mem.req.bits.addr := currentAddress

105 io.mem.req.bits.tag := combinationStream (5,0) // Change for out -of-order

106 io.mem.req.bits.cmd := 1.U

107 io.mem.req.bits.data := combinationStream // combinationStream

59

CHAPTER 8. CONCLUSION

108 // io.mem.req.bits.size := log2Ceil (8).U

109 // io.mem.req.bits.signed := Bool(false)

110 io.mem.req.bits.phys := Bool(false)

111

112 // Always false

113 io.interrupt := Bool(false)

114 }

115

116

117 // Generates binary string combinations based on input constraints and saves them

to memory.

118 object memoryAccess {

119 // Depending on the type for cycleCombinations , a different combination pattern

will be used.

120 def cycleCombinations(constraints: UInt , getNext: Bool , reset: Bool , kind: Int

) : UInt = {

121 val initial = Wire(UInt (64.W)) //The first value of the cycle

122 if(kind == 1) { //The general cycle starts and ends with all 1s

123 initial := (1.U << constraints (5,0)) - 1.U

124 } else { //The other cycles start with lower 1s filled according to

allowed weights

125 initial := (1.U << constraints (11 ,6)) - 1.U

126 }

127

128 val nextSent = Reg(UInt (64.W)) //The value currently saved for storing to

memory

129 val result = kind match { // Calculate next value as the last is being

stored

130 case 0 => nextCombination.fixedWeight(constraints (5,0), nextSent)

131 case 1 => nextCombination.generalCombinations(constraints (5,0),

nextSent)

132 case 2 => nextCombination.rangedCombinations(constraints (5,0),

nextSent , constraints (11 ,6), constraints (17 ,12))

133 }

134

135 // Cycle by one when next value requested

136 when(getNext) {

137 nextSent := result

138 }

139

140 // Start new cycle of the requested length when a reset is requested

141 when(reset) {

60

CHAPTER 8. CONCLUSION

142 nextSent := initial

143 }

144 nextSent

145 }

146 }

147

148 //These methods generate the next combination for a certain function with the

given parameters

149 object nextCombination {

150 def doneSignal = UInt("hffffffff") // Signal to return upon a finished cycle

(64 bit -1)

151

152 // Generates a fixed -weight binary string based on a previous string of the

same

153 // weight and length. Binary strings up to length 32 will work.

154 def fixedWeight(length: UInt , previous: UInt) : UInt = {

155 // Calculations to generate the next combination (From Knuth ’s algorithm

for Williams ’ ’cool’ ordering)

156 //Mask up to the right -most ’10’ of bits

157 val trimmed = previous & (previous + 1.U) // Remove trailing 1s

158 val trailed = trimmed ^ (trimmed - 1.U) //Make a mask for the right -most

’10’ onwards (if no ’10’, mask everything)

159 val indexTrailed = trailed & previous //Mask the previous string

160

161 // Create a duplicate of the mask if the bit before the last ’10’ is a 1

162 val indexShift = trailed + 1.U //Set the bit to the left of the mask (or

nothing set if mask is of everything)

163 val subtracted = (indexShift & previous) - 1.U //If the bit masked by

indexShift is 1, subtracted is the mask , if it is 0, subtracted has all bits

set

164 val fixed = Mux(subtracted.asSInt < 0.S, 0.U, subtracted) //If no ’10’, or

the bit at indexShift isn’t 1, fixed is 0, otherwise it is subtracted

165

166 // Rotate masked bits to get the result , return if the cycle isn’t over yet

167 val result = previous + indexTrailed - fixed // Rotate the right side of

the string starting from indexShift , or the whole string if indexShift not set

168 val stopper = 1.U(1.W) << length (5,0) //Set the bit to the left of the

binary string

169

170 //Fill result with all 1s if finished

171 Mux(result >> length =/= 0.U, doneSignal , result % stopper) //The end of

the cycle has been reached if the bit at stopper is set in the new string

61

CHAPTER 8. CONCLUSION

172 }

173

174 // Generates the next binary string of a certain length based on the cool -er

ordering

175 def generalCombinations(length: UInt , previous: UInt) : UInt = {

176 // Calculations to generate the next combination (Algorithm by Maddie to

generate Stevens ’ and Williams ’ ’cooler ’ orderings)

177 //Mask up to the right -most ’01’ before the end of the string

178 val trimmed = previous (31 ,1) | (previous (31 ,1) - 1.U) // Remove trailing 0s

179 val trailed = trimmed ^ (trimmed + 1.U) //Make a mask for the right -most

01 onwards

180 val mask = Wire(UInt (32.W)) // Shift the mask to a 32 bit wire instead of

31

181 mask := (trailed << 1.U) + 1.U

182

183 //Find the last spot in the mask , to use for rotating the 0th bit

184 val lastTemp = Wire(UInt (32.W))

185 lastTemp := trailed + 1.U //If there is a valid 01, this is the last bit

186 val lastLimit = 1.U << (length (5,0) - 1.U) // Otherwise use the final bit

187 val lastPosition = Mux(lastTemp > lastLimit || lastTemp === 0.U, lastLimit

, lastTemp) // Choose which bit position to use

188

189 val cap = 1.U << length (5,0) //One bit beyond the width of the string

190 val first = Mux(mask < cap , 1.U & previous , 1.U & ~previous) //Flip the

first bit if there is no valid 01

191 val shifted = (previous & mask) >> 1.U // Shift the masked region

192 val rotated = Mux(first === 1.U, shifted | lastPosition , shifted) //Move

the first bit to the end of the shifting

193 val result = rotated | (~mask & previous) // Combine the rotated and non -

rotated parts of the string

194

195 Mux(result === (cap - 1.U), doneSignal , result) //If finished , the result

is all 1s

196 }

197

198 // Generates the next binary string within a weight range , based on cool -est

ordering

199 def rangedCombinations(length: UInt , previous: UInt , minWeight: UInt ,

maxWeight: UInt) : UInt = {

200 // Calculations to generate the next combination (Algorithm by Maddie to

generate Stevens ’ and Williams ’ ’coolest ’ orderings)

201 //Mask up to the right -most ’01’ before the end of the string

62

CHAPTER 8. CONCLUSION

202 val trimmed = previous (31 ,1) | (previous (31 ,1) - 1.U) // Remove trailing 1s

203 val trailed = trimmed ^ (trimmed + 1.U) //Make a mask for the right -most

01 onwards

204 val mask = Wire(UInt (32.W)) // Shift the mask to a 32 bit wire instead of a

31 bit wire

205 mask := (trailed << 1.U) + 1.U

206

207 //Find the last spot in the mask , used for rotating the 0th bit

208 val lastTemp = Wire(UInt (32.W))

209 lastTemp := trailed + 1.U //If there is a valid ’01’, this is the last

bit

210 val lastLimit = 1.U << (length (5,0) - 1.U) // Otherwise use the string ’s

final bit

211 val lastPosition = Mux(lastTemp > lastLimit || lastTemp === 0.U, lastLimit

, lastTemp) // Choose which bit position to use

212

213 val count = Wire(UInt (32.W))

214 count := PopCount(previous (31,0)) // Count the number of set bits in the

string , which should be within the weight constraints

215

216 val cap = 1.U << length (5,0) //Set a bit one beyond the string ’s width

217 val flipped = 1.U & ~previous //Take the complement of the 0th bit

218 val valid = Mux(flipped === 0.U, count > minWeight , count < maxWeight) //

Check if still a valid weight with that bit changed

219 val first = Mux(mask < cap || !valid , 1.U & previous , flipped) //Flip the

first bit if there is no valid 01

220 val shifted = (previous & mask) >> 1.U // Shift the masked region

221

222 //Flip the bit while rotating if no 01 and new string is valid

223 val rotated = Mux(first === 1.U, shifted | lastPosition , shifted) //Move

the first bit

224 val result = rotated | (~mask & previous) //Add the first bit to the final

result

225

226 Mux(result === (1.U << minWeight) - 1.U, doneSignal , result) // Return -1

if finished

227 }

228 }

Listing 8.2: RoCC accelerator for binary bit pattern generation implemented in Chisel

1 // RoCC strcpy accelerator

2

63

CHAPTER 8. CONCLUSION

3 /**

4 * Lazy module for accelerator for comparing two strings.

5 */

6 class Strcpy(implicit p: Parameters) extends LazyRoCC {

7 override lazy val module = new StrcpyImp(this)

8 }

9

10 /**

11 * This accelerator compares two strings; the result is the byte difference

12 * the first differing bytes , or 0. This implementation assumes that strings

13 * are resident in virtual memory. Calls to this instruction may require mapping

14 * and/or locking pages to physical memory.

15 */

16 class StrcpyImp(outer: Strcpy)(implicit p: Parameters)

17 extends LazyRoCCModule(outer) with HasCoreParameters

18 {

19 // states of the state machine

20 val idleState :: readState :: writeState :: doneState :: Nil = Enum(Bits() ,4)

21 val state = Reg(init = idleState) // idle -> compare* -> done -> idle

22 val srcPtr = RegInit (0.U(64.W)) // pointer into the string

23 val dstPtr = RegInit (0.U(64.W)) // pointer into the string

24 val strVal = Reg(UInt (8.W)) // the character read

25 val request = Reg(init=false.B) // true iff request is in transit to mem

26

27 // back pressure to core: only ready when not computing

28 io.cmd.ready := (state === idleState) // when is this accelerator ready?

29 // when accelerator uses mem; perhaps reduced to just compare state?

30 io.busy := (state =/= idleState)

31 // request validity is stored in "request"

32 io.mem.req.valid := request

33

34 /**

35 * when we make memory requests , we’re reading a single byte from memory

36 * (or cache) at a time. These bytes are unsigned (if they’d been signed

37 * then the data field would be sign -extended). The addresses we use are

38 * virtual addresses; we depend on the caching system to perform the page

39 * table walking for us (this is important because a translation failure may

40 * require re -play of the request).

41 */

42 // static portions of the request

43 val R = 0.U

44 val W = 1.U

64

CHAPTER 8. CONCLUSION

45 val cmd = Reg(init = R)

46 val data = Reg(init = 0.U(8.W))

47 val ptr = Reg(init = 0.U(64.W))

48 val size = Reg(init = 0.U(4.W))

49

50 val done = (state === writeState) && (! request) && (data === 0.U)

51

52 io.mem.req.bits.cmd := cmd // R/W

53 io.mem.req.bits.size := 0.U // log2(n); n is one byte

54 io.mem.req.bits.signed := false.B // value is unsigned

55 io.mem.req.bits.data := data // write data

56 io.mem.req.bits.phys := false.B // pointers are virtual addresses

57 io.mem.req.bits.addr := ptr // R/W address

58 io.mem.req.bits.tag := 0.U // identify the source string (A=0, B=1)

59

60 /**

61 * The state machine.

62 * This machine starts in idle. When a command is received , the request

63 * to memory is made and is held valid for the ready cycle and one more.

64 * Response must be collected when valid.

65 */

66 switch (state) {

67 is (idleState) {

68 when (io.cmd.fire()) {

69 srcPtr := io.cmd.bits.rs1 // first String

70 dstPtr := io.cmd.bits.rs2 // second string

71 // now , set up initial request: read from source string

72 request := true.B

73 cmd := R

74 ptr := io.cmd.bits.rs1

75 data := 0.U

76 state := readState // move to first stage request

77 }

78 }

79 is (readState) {

80 // request is now *not* valid; await response is valid

81 when (RegNext(io.mem.req.fire())) {

82 request := false.B

83 }

84 // on "rising edge" of response:

85 when (io.mem.resp.valid && !RegNext(io.mem.resp.valid)) { //

memory as response data

65

CHAPTER 8. CONCLUSION

86 srcPtr := srcPtr +1.U // move source along

87 // set up write request to destination

88 cmd := W

89 ptr := dstPtr

90 data := io.mem.resp.bits.data

91 val ch = io.mem.resp.bits.data (7,0)

92 printf("Writing ’%c’ to %x\n",ch,dstPtr);

93 state := writeState

94 request := true.B

95 }

96 }

97 is (writeState) {

98 // request is now *not* valid; await response is valid

99 when (RegNext(io.mem.req.fire())) {

100 request := false.B

101 }

102 when (! request) {

103 dstPtr := dstPtr +1.U

104 // (possibly) set up next read:

105 cmd := R

106 ptr := srcPtr

107 data := 0.U

108 state := Mux(done ,idleState ,readState)

109 request := !done // if we’re not done , we’re reading

110 }

111 }

112 }

113 // combinational circuitry for response building

114 io.resp.valid := false.B

115 io.interrupt := false.B

116 }

Listing 8.3: RoCC strcpy accelerator implemented in Chisel

1 // RoCC strcmp accelerator

2

3 /**

4 * Lazy module for accelerator for comparing two strings.

5 */

6 class FullStrcmp(implicit p: Parameters) extends LazyRoCC {

7 override lazy val module = new FullStrcmpImp(this)

8 }

9

66

CHAPTER 8. CONCLUSION

10 /**

11 * This accelerator compares two strings; the result is the byte difference

12 * the first differing bytes , or 0. This implementation assumes that strings

13 * are resident in virtual memory. Calls to this instruction may require mapping

14 * and/or locking pages to physical memory.

15 */

16 class FullStrcmpImp(outer: FullStrcmp)(implicit p: Parameters)

17 extends LazyRoCCModule(outer) with HasCoreParameters

18 {

19 // states of the state machine

20 val idleState :: compareState :: doneState :: Nil = Enum(Bits() ,3)

21 val state = Reg(init = idleState) // idle -> compare* -> done -> idle

22 val aPtr = RegInit (0.U(64.W)) // pointer into the string

23 val bPtr = RegInit (0.U(64.W)) // pointer into the string

24 val aVal = Reg(UInt (8.W)) // the character read

25 val bVal = Reg(UInt (8.W)) // the character read

26 val diff = aVal - io.mem.resp.bits.data // computed difference of a and b

27 val done = ((aVal === 0.U) || // finish predicate

28 (io.mem.resp.bits.data === 0.U) || (diff =/= 0.U))

29 val source = Reg(init=0.U(1.W)) // which (A=0 or B=1) string is the source

30 val destReg = Reg(init=io.cmd.bits.inst.rd) // register to write to

31 val request = Reg(init=false.B) // true iff request is in transit to mem

32

33 // back pressure to core: only ready when not computing

34 io.cmd.ready := (state === idleState) // when is this accelerator ready?

35 // when accelerator uses mem; perhaps reduced to just compare state?

36 io.busy := (state =/= idleState)

37 // request validity is stored in "request"

38 io.mem.req.valid := request

39

40 /**

41 * when we make memory requests , we’re reading a single byte from memory

42 * (or cache) at a time. These bytes are unsigned (if they’d been signed

43 * then the data field would be sign -extended). The addresses we use are

44 * virtual addresses; we depend on the caching system to perform the page

45 * table walking for us (this is important because a translation failure may

46 * require re -play of the request).

47 */

48 // static portions of the request

49 io.mem.req.bits.cmd := 0.U // read

50 io.mem.req.bits.size := 0.U // log2(n); n is one byte

51 io.mem.req.bits.signed := false.B // value is unsigned

67

CHAPTER 8. CONCLUSION

52 io.mem.req.bits.data := Bits (0) // data written (never used)

53 io.mem.req.bits.phys := false.B // pointers are virtual addresses

54 io.mem.req.bits.addr := Mux(source === 0.U, aPtr , bPtr) //

55 io.mem.req.bits.tag := source // identify the source string (A=0, B=1)

56

57 /**

58 * The state machine.

59 * This machine starts in idle. When a command is received , the request

60 * to memory is made and is held valid for the ready cycle and one more.

61 * Response must be collected when valid.

62 */

63 switch (state) {

64 is (idleState) {

65 when (io.cmd.fire()) {

66 destReg := io.cmd.bits.inst.rd // get destination register

67 aPtr := io.cmd.bits.rs1 // first String

68 bPtr := io.cmd.bits.rs2 // second string

69 request := true.B

70 state := compareState // move to first stage request

71 }

72 }

73 is (compareState) {

74 // request is now *not* valid; await response is valid

75 when (RegNext(io.mem.req.fire())) {

76 request := false.B

77 }

78 when (io.mem.resp.valid && !RegNext(io.mem.resp.valid)) { //

memory as response data

79 request := true.B

80 when (source === 0.U) {

81 aVal := io.mem.resp.bits.data

82 aPtr := aPtr +1.U

83 } .otherwise {

84 bVal := io.mem.resp.bits.data

85 bPtr := bPtr +1.U

86 when (done) {

87 request := false.B;

88 state := doneState

89 }

90 }

91 source := ~source

92 }

68

CHAPTER 8. CONCLUSION

93 }

94 is (doneState) {

95 when (io.resp.fire()) {

96 state := idleState

97 }

98 }

99 }

100 // combinational circuitry for response building

101 io.resp.bits.rd := destReg

102 io.resp.bits.data := diff

103 io.resp.valid := state === doneState

104 io.interrupt := false.B

105 }

Listing 8.4: RoCC strcmp accelerator implemented in Chisel

69

Bibliography

[1] J. L. Hennessy and D. A. Patterson, “A new golden age for computer architecture,” Commun.

ACM, vol. 62, no. 2, pp. 48–60, Jan. 2019, issn: 0001-0782. doi: 10.1145/3282307. [Online].

Available: http://doi.acm.org/10.1145/3282307.

[2] G. Venkatesh, J. Sampson, N. Goulding, S. Garcia, V. Bryksin, J. Lugo-Martinez, S. Swanson,

and M. B. Taylor, “Conservation cores: Reducing the energy of mature computations,” SIG-

PLAN Not., vol. 45, no. 3, pp. 205–218, Mar. 2010, issn: 0362-1340. doi: 10.1145/1735971.

1736044.

[3] H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankaralingam, and D. Burger, “Dark silicon and

the end of multicore scaling,” in 2011 38th Annual International Symposium on Computer

Architecture (ISCA), Jun. 2011, pp. 365–376.

[4] M. B. Taylor, “Is dark silicon useful? Harnessing the four horsemen of the coming dark silicon

apocalypse,” in DAC Design Automation Conference 2012, Jun. 2012, pp. 1131–1136.

[5] R. Razdan and M. D. Smith, “A high-performance microarchitecture with hardware-programmable

functional units,” in Proceedings of the 27th Annual International Symposium on Microarchi-

tecture, ser. MICRO 27, San Jose, California, USA: Association for Computing Machinery,

1994, pp. 172–180, isbn: 0897917073. doi: 10.1145/192724.192749. [Online]. Available:

https://doi.org/10.1145/192724.192749.

[6] T. J. Callahan, J. R. Hauser, and J. Wawrzynek, “The Garp architecture and C compiler,”

Computer, vol. 33, no. 4, pp. 62–69, Apr. 2000, issn: 1558-0814. doi: 10.1109/2.839323.

[7] S. Yehia, S. Girbal, H. Berry, and O. Temam, “Reconciling specialization and flexibility

through compound circuits,” in 2009 IEEE 15th International Symposium on High Perfor-

mance Computer Architecture, Feb. 2009, pp. 277–288. doi: 10.1109/HPCA.2009.4798263.

70

BIBLIOGRAPHY

[8] S. Swanson and M. B. Taylor, “Greendroid: Exploring the next evolution in smartphone

application processors,” IEEE Communications Magazine, vol. 49, no. 4, pp. 112–119, Apr.

2011. doi: 10.1109/MCOM.2011.5741155.

[9] G. Venkatesh, J. Sampson, N. Goulding-Hotta, S. K. Venkata, M. B. Taylor, and S. Swanson,

“QSCORES: Trading dark silicon for scalable energy efficiency with quasi-specific cores,”

in 2011 44th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO),

Dec. 2011, pp. 163–174.

[10] A. Waterman, Y. Lee, D. A. Patterson, and K. Asanović, “The RISC-V Instruction Set

Manual, Volume I: User-Level ISA, Version 2.0,” EECS Department, University of California,

Berkeley, Tech. Rep. UCB/EECS-2014-54, May 2014. [Online]. Available: http://www2.

eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-54.html.

[11] K. Asanović, R. Avizienis, J. Bachrach, S. Beamer, D. Biancolin, C. Celio, H. Cook, D.

Dabbelt, J. Hauser, A. Izraelevitz, S. Karandikar, B. Keller, D. Kim, J. Koenig, Y. Lee, E.

Love, M. Maas, A. Magyar, H. Mao, M. Moreto, A. Ou, D. A. Patterson, B. Richards, C.

Schmidt, S. Twigg, H. Vo, and A. Waterman, “The Rocket Chip Generator,” EECS Depart-

ment, University of California, Berkeley, Tech. Rep. UCB/EECS-2016-17, Apr. 2016. [Online].

Available: http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html.

[12] Y. Lee, A. Waterman, R. Avizienis, H. Cook, C. Sun, V. Stojanović, and K. Asanović, “A

45nm 1.3GHz 16.7 double-precision GFLOPS/W RISC-V processor with vector accelerators,”

in ESSCIRC 2014 - 40th European Solid State Circuits Conference (ESSCIRC), Sep. 2014,

pp. 199–202. doi: 10.1109/ESSCIRC.2014.6942056.

[13] H. Mao, “Hardware acceleration for memory to memory copies,” Master’s thesis, EECS De-

partment, University of California, Berkeley, Jan. 2017. [Online]. Available: http://www2.

eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-2017-2.html.

[14] J. Koenig, D. Biancolin, J. Bachrach, and K. Asanovic, “A hardware accelerator for computing

an exact dot product,” in 2017 IEEE 24th Symposium on Computer Arithmetic (ARITH),

Jul. 2017, pp. 114–121. doi: 10.1109/ARITH.2017.38.

[15] S. Davidson, S. Xie, C. Torng, K. Al-Hawai, A. Rovinski, T. Ajayi, L. Vega, C. Zhao, R.

Zhao, S. Dai, A. Amarnath, B. Veluri, P. Gao, A. Rao, G. Liu, R. K. Gupta, Z. Zhang, R.

Dreslinski, C. Batten, and M. B. Taylor, “The Celerity open-source 511-core RISC-V tiered

accelerator fabric: Fast architectures and design methodologies for fast chips,” IEEE Micro,

vol. 38, no. 2, pp. 30–41, Mar. 2018. doi: 10.1109/MM.2018.022071133.

71

BIBLIOGRAPHY

[16] S. Eldridge, T. J. Watson, V. Verma, R. S. Joshi, and P. Bose, “A low voltage RISC-V

heterogeneous system boosted SRAMs, machine learning, and fault injection on VELOUR,”

in First Workshop on Computer Architecture Research with RISC-V (CARRV 2017) at the

50th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO-50), Oct.

2017.

[17] B. Keller, M. Cochet, B. Zimmer, J. Kwak, A. Puggelli, Y. Lee, M. Blagojević, S. Bailey,

P. Chiu, P. Dabbelt, C. Schmidt, E. Alon, K. Asanović, and B. Nikolić, “A RISC-V processor

SoC with integrated power management at submicrosecond timescales in 28 nm FD-SOI,”

IEEE Journal of Solid-State Circuits, vol. 52, no. 7, pp. 1863–1875, Jul. 2017. doi: 10.1109/

JSSC.2017.2690859.

[18] Z. Ye, A. Moshovos, S. Hauck, and P. Banerjee, “CHIMAERA: A High-Performance Archi-

tecture with a Tightly-Coupled Reconfigurable Functional Unit,” Apr. 2000.

[19] S. Y. Shao, “Design and modeling of specialized architectures,” PhD thesis, Graduate School

of Arts and Sciences, Harvard University, 2016. [Online]. Available: https://dash.harvard.

edu/handle/1/33493560.

[20] J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman, R. Avižienis, J. Wawrzynek, and K.

Asanović, “Chisel: Constructing hardware in a Scala embedded language,” in DAC Design

Automation Conference 2012, Jun. 2012, pp. 1212–1221. doi: 10.1145/2228360.2228584.

[21] P. S. Li, A. M. Izraelevitz, and J. Bachrach, “Specification for the FIRRTL language,” EECS

Department, University of California, Berkeley, Tech. Rep. UCB/EECS-2016-9, Feb. 2016.

[Online]. Available: http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-

9.html.

[22] S. Karandikar, H. Mao, D. Kim, D. Biancolin, A. Amid, D. Lee, N. Pemberton, E. Amaro, C.

Schmidt, A. Chopra, Q. Huang, K. Kovacs, B. Nikolic, R. Katz, J. Bachrach, and K. Asanović,

“FireSim: FPGA-accelerated cycle-exact scale-out system simulation in the public cloud,” in

Proceedings of the 45th Annual International Symposium on Computer Architecture, ser. ISCA

’18, Los Angeles, California: IEEE Press, 2018, pp. 29–42, isbn: 978-1-5386-5984-7. doi: 10.

1109/ISCA.2018.00014. [Online]. Available: https://doi.org/10.1109/ISCA.2018.00014.

[23] S. Karandikar, A. Ou, A. Amid, H. Mao, R. Katz, B. Nikolić, and K. Asanović, “FirePerf:

FPGA-accelerated full-system hardware/software performance profiling and co-design,” Mar.

2020, pp. 715–731. doi: 10.1145/3373376.3378455.

72

BIBLIOGRAPHY

[24] lowRISC, The lowRISC chip, version 0.6 refresh. [Online]. Available: https://github.com/

lowRISC/lowrisc-chip.

[25] D. Knuth, The Art of Computer Programming, Volume 4, Fascicle 3. Pearson Education,

2005, isbn: 0201853949.

[26] B. Stevens and A. Williams, “The coolest way to generate binary strings,” Theory of Com-

puting Systems, vol. 54, no. 4, pp. 551–557, May 2014.

73

