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Abstract

Nonperiodic tilings of the plane exhibit no translational symmetry. Pen-
rose tilings are a remarkable class of nonperiodic tilings for which the set of
prototiles consists of just two shapes. The pentagrid method, introduced by
N.G. de Bruijn, allows us to generate Penrose tilings by taking a slice of the
integer lattice in five-dimensional space. The empire problem asks: Given a
subset of a Penrose tiling, what tiles appear in all tilings that include that sub-
set? We present a new approach to the empire problem that uses the pentagrid
method to identify elements of the empire.
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Chapter 1

Introduction

A tiling of the two-dimensional plane covers the plane with tiles, leaving nei-
ther gaps nor overlaps. Each tile is a rotation, translation, or reflection of
one of several template shapes or prototiles. Most familiar tilings are peri-
odic: if we translate the tiling by a certain distance, it will exactly match the
original tiling. However, aperiodic sets of prototiles admit an infinite num-
ber of possible tilings, none of which are periodic. The well-known aperiodic
Penrose tilings use just two prototiles to create an infinite number of distinct
non-periodic tilings. [GS87]

Specific arrangements of tiles may force the presence of other tiles at dif-
ferent positions. Suppose we have some patch of tiles that we know to be part
of a complete tiling. Without knowing the details of the entire tiling, we may
be able to predict the locations of other tiles — even tiles that are very far
away. This set of forced tiles for a specific patch is called the patch’s empire.
The empire problem asks:

Given an initial patch of tiles P , what is the empire of P?

We consider this problem with repect to Penrose tilings, although it applies
to any class of tilings. This thesis answers a question closely related to the
empire problem:

Given an initial patch of tiles P and another tile T , is T forced by
P?

The tile T may be located anywhere in the tiling. Answering this question
immediately leads to an algorithm for identifying finite subsets of the patch’s
empire.
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Algorithms for identifying subsets or supersets of an initial patch’s empire
in a Penrose tiling exist. In particular, Minnick [Min98], extending the work of
Conway and Ammann, identified subsets of the empires by analyzing Ammann
bars, a decoration for Penrose tiles realized as parallel lines that crisscross the
tiling in five directions. Her algorithm predicted the locations of Ammann
bars using a technique called canonical projection, in which points on the
two-dimensional integer lattice are projected onto a line of irrational slope.
However, Minnick herself identified a case in which canonical projection fails
to identify forced tiles; other such exceptions may exist, casting doubt on the
completeness of her algorithm.

Our approach will locate forced tiles using de Bruijn’s pentagrid method,
an algebraic technique capable of generating all Penrose tilings. A pentagrid
consists of five sets of parallel lines crisscrossing the plane at angles of 2π

5
to

one another. Any pentagrid may be mapped to a Penrose tiling by thick and
thin rhombs and vice versa. This method is equivalent to a projection method
similar to the one used to generate musical sequences.

Just as Minnick was able to predict which Ammann bars would be forced
using a projection from the integer lattice in two dimensions, it is possible to
predict exactly which tiles will be forced using deBruijn’s higher-dimensional
techniques. We present an algorithm for identifying forced tiles and compute
the resulting empires for several important patches called vertex configurations.
We expect that our results for Penrose tilings will extend to other tilings
generated by projection methods, including tilings in three or more dimensions.

Chapter 2 overviews the essential concepts of Penrose tilings, and intro-
duces the two main algebraic techniques for generating tilings. Chapter 3
discusses how to identify the local empire of a contiguous patch P — that is,
the subset of the empire that is “next to” P . Chapter 4 explains de Bruijn’s
pentagrid method in detail. Finally, Chapter 5 presents our algorithm for de-
tecting forcing tiles, and Appendix A presents the results for the algorithm for
various initial patches.
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Chapter 2

Background

2.1 Tilings and Aperiodicity

A tiling of the two-dimensional plane covers the plane with tiles, leaving neither
gaps nor overlaps. Familiar tilings include those by regular polygons such as
squares (Figure 2.1(a)) or hexagons (Figure 2.1(b)). Each tile is a translation,
rotation, or reflection of one of a finite number of prototiles. For example, the
set of prototiles for the tilings in Figures 2.1(a) and 2.1(b) are a single square
and a single hexagon, respectively. We say that a set of protoiles admits a
particular tiling if that tiling consists entirely of copies of those prototiles.
These definitions naturally extend to three or more dimensions.

Notice the rigid structure of the tilings in Figure 2.1. Suppose we were to
translate either tiling such that the shaded tile’s new location exactly coin-
cided with the original location of another tile. The resulting tiling would be
identical to the original. We say that a tiling exhibits translational symmetry
if there exists some nontrivial translation of the tiling that exactly matches up
with the original. Other symmetries include reflection about a line or rotation
about a point. The tiling by squares exhibits four-fold rotational symmetry
— that is, a rotation through an angle of 2π

4
= 90◦ yields the same tiling. The

tiling by regular hexagons exhibits three-fold and six-fold rotational symmetry.
Tilings with translational symmetry are periodic: they have some pattern

that repeats at regular intervals. In contrast, a tiling that exhibits no transla-
tional symmetry is nonperiodic. It is possible for a particular set of prototiles
to admit both periodic and nonperiodic tilings — for instance, the tilings in
Figure 2.2 are created from the same prototile, yet only Figure 2.2(a) is non-

6



(a) A tiling by squares. (b) A tiling by hexagons.

Figure 2.1: Tilings by regular polygons. In each, a single copy of the prototile is
shaded.

(a) An example of a nonperiodic tiling. (b) A periodic tiling with the same
prototile.

Figure 2.2: The same set of prototiles may admit tilings both periodic and nonpe-
riodic tilings. This particular prototile (a nine-sided polygon) and the
spiral tiling in Figure 2.2(a) are from [GS87].
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Figure 2.3: The Penrose kite and dart (θ = π
5 ).

3θ 3θ

2θ

2θ

4θ

4θ

θθ

Figure 2.4: The Penrose rhombs (θ = π
5 ).

periodic. Aperiodic sets of prototiles admit an infinite number of different
tilings, all of which are nonperiodic.

Tilings play an important role in crystallography, where each tile repre-
sents a “unit cell” in a crystal. The rules of crystallography for two dimen-
sions allow one-, two-, three-, four-, or six-fold rotational symmetry, but for-
bid five-fold rotational symmetry and any symmetries higher than six-fold.
(These “rules” may be derived using simple geometric arguments.) How-
ever, in 1984, researchers discovered that certain crystals exhibit icosahedral
(twenty-fold) rotational symmetry, which is forbidden by the analogous rules
of three-dimensional crystallography. This revelation shattered the existing as-
sumption that crystals were periodic. Nonperiodic (or “quasiperiodic”) tilings
emerged as a potential model for crystal structure.

In 1974, Penrose discovered a particularly elegant aperiodic set with just
two prototiles, the kite and the dart. Both prototiles are quadrilaterals, with
two sides of length τ (the golden ratio, 1+

√
5

2
) and two sides of length 1. Figure

2.3 gives the exact specifications. Tilings by kites and darts are not periodic,

8



Figure 2.5: Without matching rules, the thick and thin rhombs admit periodic
tilings of the plane.

and most have no rotational symmetry. However, all Penrose tilings exhibit
five-fold rotational symmetry in finite patches, suggesting that they are rel-
evant to quasicrystallography. Remarkably, Penrose discovered his class of
tilings a decade before the appearance of quasicrystals, although the revela-
tion that Penrose tilings had physical applications has certainly increased the
level of general interest in their properties.

Tilings by kites and darts are equivalent to tilings by a second set of pro-
totiles, the thick and thin rhombs. Each rhomb has four sides of unit length
and angles that are multiples of π

5
. Figure 2.4 gives the exact specifications.

We will use rhombs instead of kites and darts for the remainder of this thesis,
as their algebraic properties are extremely useful.

The thick and thin rhombs come with special matching rules that constrain
how the tiles may fit together. We express these matching rules by decorating
the tiles appropriately. In Figure 2.4 each each edge has either one or two
arrows; in a Penrose tiling the rhombs must be placed edge-to-edge such that
each edge has the same number and direction of arrows. Without matching
rules, the rhombs admit periodic tilings — for example, see the tiling in Figure
2.5.

An important distinction to make is that matching rules alone do not
guarantee that the prototiles admit a complete tiling of the plane. It is easy

9



(a) The thick rhomb. (b) The decomposed thick rhomb.

(c) The thin rhomb. (d) The decomposed thin rhomb.

Figure 2.6: Substitution rules for the thick and thin rhombs.

to construct finite patches of tiles that obey matching rules but cannot be
extended to a complete tiling. The matching rules guarantee that if we can
find a complete tiling, then that tiling is nonperiodic.

Any tiling by thick and thin rhombs may be uniquely decomposed into a
tiling by prototiles that are also thick and thin rhombs, but smaller by a factor
of τ . Substitution rules for decomposition are shown in Figure 2.6, and Figure
2.7 gives an example of decomposing a tiling. This mapping from a tiling to its
decomposition is actually a bijection: we may uniquely compose any perfect
tiling to produce a tiling by rhombs that are larger than the originals by a
factor of τ .

Decomposition provides a simple way of generating finite tilings: start with
a single prototile, decompose it into smaller tiles, expand the prototiles to their
original size, and repeat. In this way we may generate arbitrarily large (but
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Figure 2.7: A tiling by rhombs and its decomposition. The original tiles have dashed
edges.
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finite) patches. As proved in [GS87], the ability to generate arbitrarily large
finite patches guarantees that a complete tiling exists; therefore the Penrose
rhombs admit a complete tiling of the plane.

One elegant property of Penrose tilings is local isomorphism. The local
isomorphism property states that if a finite patch appears in a Penrose tiling,
then it appears an infinite number of times in every Penrose tiling. Moreover,
these identical patches are distributed evenly throughout the tiling. The finite
patch may include an arbitrarily large number of tiles.

Ammann bars are an alternate method for specifying matching rules. Fig-
ure 2.8(a) shows the thick and thin rhombs decorated with Ammann bars.
In a complete Penrose tiling, Ammann bars extend across the plane in five
directions, with no kinks or holes (Figure 2.8(b) gives an example). The bars
crisscross the tiling in five directions, separated by angles of 2π

5
.

A fascinating property of Ammann bars (and one examined in detail by
Minnick) are the patterns formed by the intervals between consecutive parallel
bars. In Figure 2.8(b) we can see that each interval has one of two possible
lengths, which we shall call L and S. The ratio of length L to length S is τ .
We will never find two consecutive S intervals or three consecutive L intervals.
In fact, if we take just one set of parallel Ammann bars and translate it in the
direction perpendicular to the bars, the sequence will never match the original
exactly, regardless of how far we translate it. The intervals form a musical
sequence, a one-dimensional aperiodic tiling. Many of the properties of Penrose
tilings carry over to musical sequences, including composition/decomposition,
local isomorphism.We can define substitution rules for decomposing musical
sequences as follows:

L → LS

S → L

The algebraic techniques for generating tilings that we will examine in the
next section are also useful for generating musical sequences.

2.2 Algebraic Methods

We now introduce two important methods for algebraically generating Penrose
tilings. Both methods make use of the somewhat startling fact that aperiodic
tilings are closely linked to periodic tilings in higher dimensions. The details
presented below are based on the presentation Senechal [Sen95].

12



(a) The thick and thin rhombs decorated with Ammann bars.

(b) A tiling using Ammann bars.

Figure 2.8: Using Ammann bars for matching rules on the kite and dart.
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Figure 2.9: Canonical projection for the one-dimensional case. The intervals be-
tween the projected points form a musical sequence.

2.2.1 Canonical Projection

We introduce the technique of canonical projection by describing how to gen-
erate a one-dimensional nonperiodic tiling — namely, the musical sequences
described in the last section. We project a subset of the two-dimensional in-
teger lattice orthogonally onto a line of irrational slope. The resulting set
of points (or rather, the sequence of intervals between each consecutive pair
of points) forms a musical sequence. See Figure 2.9 for an example of using
canonical projection to generate a musical sequence.

Let L be the line of slope τ−1 that passes through the origin and let L⊥ be
the line perpendicular to L that intersects L at the origin:

L =
{

(x, y) | y =
x

τ
, x ∈ R

}

L⊥ = {(x, y) | y = −τx, x ∈ R}
Now take the unit square at the origin, H, and translate it by some shift vector
~γ:

H = {(x, y) | x, y ∈ [0, 1]}
H + ~γ = {(x, y) | x ∈ [γx, γx + 1] and y ∈ [γy, γy + 1]}

where γx and γy are the x and y components of ~γ, respectively. We define a
window W, which is the orthogonal projection of the translated unit square
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onto L⊥:

W = Π⊥ (H + ~γ)

Π⊥ is the transformation that projects points onto L⊥. Finally, take all points
on the two-dimensional integer lattice whose projection onto L⊥ lies within
the window W. These points, when orthogonally projected onto L, form the
set of vertices V of a musical sequence.

V =
{

Π (x, y) | x, y ∈ Z and Π⊥ (x, y) ∈ W} ,

where Π is the transformation that projects points orthogonally onto L.
This technique takes a periodic two-dimensional tiling — specifically, the

tiling of the plane by unit squares — and maps a subset of the vertices of that
tiling to a line of irrational slope. The one-dimensional variation of canonical
projection is advantageous because it uses only two dimensions, and is there-
fore simple to visualize. The shift vector ~γ dictates precisely which musical
sequence is generated; it is possible to generate all musical sequences simply
by changing the value of ~γ.

For the Penrose tilings, we must project points from five-dimensional space
(E5). The mathematics of the five-dimensional projection method are quite
similar to those described above for musical sequences. Instead of projecting
points onto a line L, we project onto a plane E . E is a totally irrational
subspace of E5: it intersects the five-dimensional integer lattice only at the
origin. (In two dimensions, a line of irrational slope that passes through the
origin is a totally irrational subspace.) L⊥ is now E⊥, the three-dimensional
subspace of E5 that is orthogonal to E . H is the unit hypercube, and W is the
projection onto E⊥ of a translation (again by a shift vector ~γ) of H. We project
onto E those points whose projection onto E⊥ lies within W. The projected
points form the vertices of a Penrose tiling by thick and thin rhombs.

2.2.2 De Bruijn’s Pentagrids

De Bruijn’s seminal paper [dB81] describes the pentagrid method, in which the
Penrose tilings appear as the orthogonal duals of another tiling. Two tilings
T and T ′ are dual if

1. There exist one-to-one mappings from the vertices, edges, and faces of
T to the faces, edges, and vertices of T ′, respectively.

15



Figure 2.10: A tiling by hexagons and its orthogonal dual tiling by equilateral tri-
angles (the dashed lines).

2. If a face F in T includes a vertex v, then the face corresponding to v in
T ′ includes the vertex corresponding to F .

The tilings are orthogonally dual if each edge is perpendicular to its correspond-
ing edge in the dual. Figure reffig:duals shows two dual tilings superimposed.
We can construct a Penrose tiling by rhombs by finding an orthogonal dual
of a pentagrid, a type of tiling created by superimposing five sets of parallel
lines. The construction of the pentagrid and its dual is explained in detail in
Chapter 4.

2.3 The Empire Problem

This thesis examines the problem of forcing in Penrose tiles. We say the a patch
of tiles P forces a tile T if T appears in the same position and orientation in
all tilings in which P appears. The set of all tiles forced by a patch is called
that patch’s empire. The empire problem asks:

Given an initial patch of tiles P , what is the empire of P?

16



Earlier we discussed Ammann bars, an alternative form of the matching
rules for Penrose tiles. Conway and Ammann’s work on the empire problem
focused on patterns of Ammann bars. If the initial patch contains two or
more parallel bars, then an infinite number of bars in that direction are forced
accross the tiling. If several forced bars intersect at just the right places, a tile
is forced. [GS87, Gar95] For instance, Figure 2.11 is the empire of a particular
kite and dart vertex configuration called the deuce, as presented in [GS87].
The darkened lines are the forced Ammann bars; when three forced bars form
a particular isoceles triangle, a kite is forced.

Minnick’s 1998 thesis extended Conway and Ammann’s work on forced
Ammann bars. She presented two algorithms for identifying forced bars. One
algorithm exhaustively tested all possible musical sequences and identified
their common elements; the other used a variation on the canonical projec-
tion method described in Section 2.2.1. However, she also noticed that this
technique does not locate all forced bars. In particular, she noticed one case
(which Conway overlooked) in which an Ammann bar is forced by an arrange-
ment of two adjacent kites. The deuce’s empire, for example, is not complete
as presented in Figure 2.11. The red bars in Figure 2.12 are also forced, as are
the red tiles.

The existence of Minnick’s exceptional case throws into doubt the use of
Ammann bars for attacking the empire problem. We cannot assume that
Minnick’s algorithms identify all forced bars; other cases like that of the two
adjacent kites may exist. The limitation of this approach is that it addresses
a one-dimensional version of a two-dimensional problem. Our approach will
locate forced tiles by considering the tiling as a whole, instead of focusing on
a particular musical sequence.

17



Figure 2.11: The empire of the deuce, as presented in [GS87].

18



Figure 2.12: The empire of the deuce, as presented in [Min98].
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Chapter 3

Vertex Configurations and Local
Empires

Each vertex in a Penrose tiling by rhombs may be classified as one of eight
different vertex configurations. These configurations allow us to identify forced
tiles that are adjacent to an initial patch. In this section, we explain how
to determine these local forcings and present results for each of the eight
vertex configurations. We also suggest an inefficient algorithm for determining
whether non-adjacent tiles are forced — that is, whether arbitrary tiles are part
of the patch’s empire.

3.1 Vertex Configurations

The neighborhood of a vertex is the set of tiles incident to that vertex. De
Bruijn [dB81] showed that the neighborhood of each vertex in a Penrose tiling
will be congruent (up to rotation) to one of eight possible vertex configura-
tions, all of which are shown in Figure 3.1. The names of these configurations
are due to de Bruijn and derive from Conway’s names for the seven vertex
configurations that appear in kite and dart tilings: king, queen, jack, deuce,
ace, sun and star [Gar77].

Vertex configurations are an important example of the limitations of match-
ing rules. We define a patch to be legal if and only if the patch appears in
complete Penrose tilings. Recall from Chapter 2 that finite patches that obey
matching rules are not guaranteed to be legal; rather, a complete tiling that
obeys mathing rules is guaranteed to be nonperiodic. Hence we must exercise
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caution when considering finite patches; we cannot assume that a patch is
legal unless we can find an example of the patch in a complete tiling.

Consider the vertex neighborhood in Figure 3.2. This finite patch obeys the
matching rules, yet is not one of the eight legal vertex configurations. Indeed, if
we try to extend the neighborhood with more tiles, it quickly becomes obvious
that the neighborhood is not legal. Interestingly, we shall see in Section 4.4.1
that certain generalizations of the Penrose tilings do include examples of this
neighborhood; for the class of tilings that this thesis considers, however, the
neighborhood is illegal.

The eight vertex configurations prove to be important in two different ways:

1. We defined empires in Chapter 2 in relation to some arbitrary “patch”
of tiles. In most cases, this patch will be one of the eight vertex config-
urations. In more complex cases, patches may include several, perhaps
non-contiguous, tiles or vertex configurations.

2. In Section 3.2, we will see that vertex configurations are useful when
looking for locally forced tiles.

Sections 3.2 and 3.3 explain the technique of using vertex configurations
to identify forced tiles.

3.2 Constructing Local Empires

Let us explore the idea of using these vertex configurations to locate forced
tiles. We see the step-by-step construction the local empire (defined below) of
the Q in Figure 3.3. The construction process is as follows:

(a) Start with the Q vertex configuration (Figure 3.3(a)).

(b) The darkened vertex in Figure 3.3(b) is incomplete in the initial Q. How-
ever, only one vertex configuration, the J, includes both a 108◦ angle and a
36◦ angle. Therefore we can “fill in” the tiles of the J around that vertex.

(c) Filling in the J forces two D configurations at the two darkened points in
Figure 3.3(c).

(d) The Q is symmetric about its horizontal axis, so the logic we used in steps
(b) and (c) applies equally to the lower half of the configuration. In Figure
3.3(d) we have filled in forced tiles accordingly.

21



(a) The D. (b) The Q. (c) The K.

(d) The J. (e) The S. (f) The S3.

(g) The S4. (h) The S5.

Figure 3.1: The eight vertex configurations.
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Figure 3.2: This vertex neighborhood is illegal, despite the fact that it obeys the
matching rules.

(e) None of the remaining incomplete vertices force a particular configuration,
so we are done.

A locally forced tile is adjacent either to the initial patch or to another
locally forced tile. The patch and its set of locally forced tiles form the local
empire. If the initial patch is contiguous, then the local empire will also be
a contiguous patch. The technique whereby we found the Q’s local empire
may be generalized to an algorithm for identifying local empires of arbitrary
patches.

1. Start with some initial patch of tiles, P .

2. Consider an incomplete vertex in the patch. If the vertex matches ex-
actly one of the eight possible vertex configurations, add the tiles in the
configuration to P .

3. Repeat from step 2 until no incomplete vertices force a particular vertex
configuration.

23



(a) The initial Q. (b) Adding a forced
J.

(c) Adding two forced
D configurations.

(d) The lower half matches the
upper half.

(e) The complete local empire.

Figure 3.3: Finding the local empire of the Q.
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Figure 3.4: Several occurrences of the Q in a complete tiling. Notice that none of
the tiles adjacent to the Q’s local empire universally agree.

This algorithm attempts to identify each incomplete vertex with a unique
vertex configuration, incrementally filling in forced tiles.

However, there is no guarantee that the local empires found by this algo-
rithm are complete. We have assumed that all finite patches are legal, and
therefore may be considering more possibilities for vertex configurations than
necessary. It is possible that the Q, for example, locally forces more tiles
than shown in Figure 3.3(d). Usually we can confirm that the local empire
is complete by comparing a few examples of the patch in complete tilings.
For instance, several occurrences of the Q and its local empire are highlighted
in Figure 3.4; it is easy to see that all tiles adjacent to the local empire are
unforced. At the least, this algorithm provides a lower bound on the patch’s
local empire.

25



Each of the eight vertex configurations has a local empire that may be iden-
tified using the algorithm above1. We present the algorithmically constructed
local empires for the D, the K, the J, the S, the S3, the S4, and the S5 in
Figures 3.5 through 3.11.

3.3 Remotely Forced Tiles

We now have a method for identifying (potentially incomplete) local empires.
However, our goal is to identify all forced tiles, not just those that are locally
forced. In this Section, we present an extension of the local algorithm that
determines whether non-local tiles are forced. We take as a precondition that
the initial patch P falls within a circle of radius R centered at a given vertex.

1. Construct all possible finite completions of the patch P that fall within
the circle of radius R. (There will be a finite number of such comple-
tions.) Represent each completion as a set Si of tiles.

2. Suppose there are n possible completions, S1 . . . Sn. Then the set of
forced tiles is the intersection of these n sets:

S1 ∩ . . . ∩ Sn

The intersection yields a subset of the patch’s empire within a distance R of the
center vertex. This approach is useful because it allows us to identify forced
tiles that are not part of the local empire. We say that such tiles are remotely
forced. However, the approach suffers from two critical weaknesses. As with
the local algorithm in Section 3.2, there is no guarantee that the patches we
construct will be legal arrangements (that is, arrangements that appear in
complete tilings). As we check vertices out to only a finite distance, it is
possible that at some distance further out we will discover that one or more of
the possible completions has an inconsistency. Suppose all finite completions
in which a tile T does not appear are illegal; in this case, T is forced, but the
algorithm determines it to be unforced. Another weakness of the algorithm is
its inefficiency. We require a large amount of space to store all of the possible
finite completions. Suppose that, on average, each completion has m vertices

1We are not being entirely truthful here. In several cases, multiple vertex configurations
fit around an incomplete vertex, but we can still fill in forced tiles because the possible
configurations have one or more tiles in common.
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within the circle of radius R (m is proportional to R2) and that each vertex may
be completed in at most k ways. Then we must store O(mk) arrangements.

In order to determine with certainty which tiles are forced, we must be able
to distinguish legal arrangements from illegal arrangements. The solution is
de Bruijn’s pentagrids, a powerful method for producing legal Penrose tilings.

27



Figure 3.5: The D does not locally force any tiles, but we include it here for the
sake of completeness.

Figure 3.6: The K’s local empire.
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Figure 3.7: The J’s local empire.

Figure 3.8: The S’s local empire.
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Figure 3.9: The S3’s local empire.
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Figure 3.10: The S4’s local empire.
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Figure 3.11: The S5’s local empire.
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Chapter 4

Pentagrids

In Chapter 2, we introduced the idea that Penrose tilings could be generated
algebraically. This chapter focuses on pentagrids, one of the two algebraic
methods discussed previously. Pentagrids were introduced by N. G. de Bruijn
in a seminal 1981 paper, just a few years after Penrose tilings were discovered.
The material in this chapter borrows heavily from de Bruijn’s paper [dB81] as
well as Marjorie Senechal’s excellent text [Sen95].

4.1 Basic Definitions

A grid is an infinite collection of regularly spaced parallel lines. The points of
the grid satisfy the grid equation:

~x · ~ε+ γ = k

for some integer k. Every line in the grid is perpendicular to a grid vector
~ε. The distance between consecutive lines is 1

|~ε| . The grid is shifted from the

origin by a distance −γ in the direction of ~ε.
A pentagrid consists of five superimposed grids. We associate each grid

with an integer j from 0 to 4, a grid vector ~εj, and a shift amount γj. We
define ~εj such that the five grids are parallel to the sides of a regular pentagon,
and consecutive grid lines are separated by a distance of 1:

~εj =

(
cos

(
2πj

5

)
, sin

(
2πj

5

))
(4.1)

Figure 4.1 is an example of a pentagrid.
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Figure 4.1: An example of a pentagrid.
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Suppose that a line on grid j satisfies the grid equation

~x · ~εj + γj = kj.

We say that the line has index kj.
We define the shift vector of a pentagrid to be a five-dimensional vector

whose components are the shift amounts (γj) for each of the five grids:

~γ = (γ0, γ1, γ2, γ3, γ4)

We construct a Penrose tiling from a pentagrid by finding the orthogonal
dual of the pentagrid. Recall from Chapter one that two tilings T and T ′ are
dual if

1. There exist one-to-one mappings from the vertices, edges, and faces of
T to the faces, edges, and vertices of T ′, respectively.

2. If a face F in T includes a vertex v, then the face corresponding to v in
T ′ includes the vertex corresponding to F .

The tilings are orthogonally dual if each edge is perpendicular to its corre-
sponding edge in the dual [GS87]. In Section 4.2, we give an example of how
to construct the dual tiling.

De Bruijn proved that the orthogonal dual of a pentagrid is a Penrose tiling
if the shift vector satisfies the sum condition:

4∑
j=0

γj = 0 (4.2)

De Bruijn also showed that every Penrose tiling can be generated by a penta-
grid that satisfies the sum condition.

One caveat is that the dual construction in Section 4.2 assumes that no
more than two lines intersect at any point. A pentagrid that satisfies this
condition is regular ; a pentagrid in which three or more lines intersect at a
single point is singular. (This restriction is unrelated to the sum condition;
singular pentagrids may obey the sum condition, and pentagrids that obey the
sum condition may be singular.) The orthogonal dual of a singular pentagrid
includes tiles that are not rhombs. For instance, the tiling in Figure 4.2 is
the dual of the pentagrid with γj = 0 for all j. Note that the dual includes
three shapes of tiles that do not appear in Penrose tilings. The two types of
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hexagons correspond to threefold intersections, and the decagon corresponds
to a fivefold intersection. Pentagrids that satisfy the sum condition will never
have exactly four lines coincident at one point.

De Bruijn proposed that we interpret singular pentagrids as corresponding
to multiple Penrose tilings. We may replace the decagon in Figure 4.2 with one
of the ten possible rotations of the patch seen in Figure 4.3. The fat hexagon
is replaced with one of two possible rotations of the Q (Figure 4.4(b)); the thin
hexagon is replaced with one of two possible rotations of the D (Figure 4.4(a)).
A pentagrid with a fivefold intersection corresponds to ten different Penrose
tilings, while a singular pentagrid with no more than three lines coincident at
any one point corresponds to two different Penrose tilings. Each of the two
or ten possible tilings corresponds to an infinitesimal perturbation of the shift
vector ~γ such that the pentagrid is regular.

4.2 Constructing the Dual

Figure 4.5 illustrates the steps in constructing part of a Penrose tiling from a
regular pentagrid.

(a) Identify the intersections of the grid lines. In the figure, we have labeled
five intersections.

(b) At each intersection point, draw a rhomb whose edges are perpendicular
to the intersecting lines.

(c) Redraw the rhombs such that they lie edge-to-edge.

(d) It is always possible to draw arrows such that the new tiles obey the
matching rules. In this case, the five rhombs form a J, so we draw arrows
that match Figure 3.1(d).

We also could have associated each face of the pentagrid with a vertex of
the Penrose tiling and drawn edges between them; however, we believe that
this approach is a little easier to visualize.

Every intersection in a pentagrid corresponds to a tile in the dual Penrose
tiling. If the angles between the two intersecting lines are 72◦ and 108◦, the
corresponding tile will be a thick rhomb. If the angles between the two in-
tersecting lines are 36◦ and 144◦, the corresponding tile will be a thin rhomb.
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Figure 4.2: The orthogonal dual of the singular pentagrid with γj = 0 for all j.
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Figure 4.3: The decagon in Figure 4.2 corresponds to the ten possible rotations of
this patch.
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(a) The two possible replacements for the
thin hexagon in Figure 4.2.

(b) The two possible replacements for the fat hexagon in
Figure 4.2.

Figure 4.4: Patches corresponding to threefold intersections in singular pentagrids.
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(a) Identify intersections.
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(b) Attach rhombs.
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(c) Place rhombs edge-to-edge. (d) Draw arrows.

Figure 4.5: Constructing the dual of a pentagrid.
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Adjacent tiles are correspond to consecutive intersections along the same grid
line, which is always perpendicular to the shared edge.

Every face in the pentagrid corresponds to a vertex in the Penrose tiling.
If a face is surrounded by n intersections, then the neighborhood of the cor-
responding vertex is a vertex configuration with n tiles. If two vertices in a
Penrose tiling are connected by an edge, then the corresponding faces in the
pentagrid must share an edge.

Although knowing how to construct the dual is useful for practical work
with pentagrids, we need a stronger mathematical approach in order to reason
about forcing. The next section puts the dual construction into mathematical
terms.

4.3 Vertex and Tile Placement

Recall from Section 4.1 that a point (x, y) falls on line k in grid j if and only
if

(x, y) · ~εj + γj = kj

It follows that a point (x, y) falls between lines k − 1 and k if and only if

k − 1 < (x, y) · ~εj + γj < k

Now consider a single face in the pentagrid. The face falls between two con-
secutive lines for each grid j. Hence d(x, y) · ~εj + γje is constant for every
point internal to the face. Let that constant be kj for each grid j; then we
may uniquely identify each face in the pentagrid with a five-tuple of integers
(k0, k1, k2, k3, k4).

Each face corresponds to a vertex in the pentagrid’s dual rhomb tiling. If
the five-tuple associated with a face is (k0, k1, k2, k3, k4), then the coordinates
of the corresponding vertex are

4∑
j=0

kj

(
cos

(
2πj

5

)
, sin

(
2πj

5

))

where (x, y) are the coordinates of any point in the face. Note that we are
imposing Euclidean coordinates on the Penrose tiling. If we want to take an
algebraic approach to forcing, we need some sort of coordinates in order to
specify the locations of tiles and vertices.
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(a) r = 2, s = 3 (b) r = 0, s = 1 (c) r = 0, s = 2

Figure 4.6: Examples of intersection types and the shapes and orientations of the
corresponding rhombs in the dual Penrose tiling.

Recall that each tile in the Penrose tiling corresponds with an intersection
in the pentagrid, and vice versa. Suppose that a tile T corresponds to the
intersection of lines kr and ks in grids r and s, respectively, where 0 ≤ r <
s ≤ 4. (r and s determine the shape and orientation of the tile, as in Figure
4.6.) Let ~x be the coordinates of the intersection. By [dB81], the four vertices
of the tile are associated with the five-tuples

(K0(~x), K1(~x), K2(~x), K3(~x), K4(~x)) + ε1(δ0r, . . . , δ4r) + ε2(δ0s, . . . , δ4s)

where

Kj(~x) = d~x · εj + γje
(ε1, ε2) ∈ {(0, 0), (0, 1), (1, 0), (0, 1)}

and δij is the Kronecker delta: δij = 1 if i = j and 0 otherwise. Note that
Kr(~x) = kr and Ks(~x) = ks. For each integer t 6= r, s such that 0 ≤ t ≤ 4,
define

kt = Kt(~x) = d~x · εt + γte (4.3)

Then each tile is associated with two grid numbers, r and s, and a five-tuple
~k = (k0, k1, k2, k3, k4). We say that T = (r, s,~k).

Note that we do not need to specify the number and direction of arrows on
the tile’s edges. Recall from Chapter 2 that the arrows one of several methods
of ensuring that a tiling is in fact a Penrose tiling. The sum condition (equation
4.2) is another such method. We may draw arrows on the tilings for aesthetic
purposes, but they are not strictly necessary as long as the pentagrid meets
the sum condition.
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4.4 Generalizations of Pentagrids

In this section we consider two generalizations of the pentagrid method, both
of which lead to interesting variations on the standard Penrose tilings. We
expect that our analysis of forcing in Chapter 5 in typical Penrose tilings will
also apply to these generalizations.

4.4.1 Generalized Penrose Tilings

Suppose we were to disobey the sum condition by using a shift vector ~γ such
that

∑
j

γj =
1

2

The result (Figure 4.7) is interesting: we obtain a tiling by thick and thin
rhombs that superficially resembles normal Penrose tilings, but is clearly a
different sort of tiling. We cannot draw arrows on these rhombs in a way
that obeys the matching rules set out in Chapter 2. We can also find vertices
(several of which are darkened) whose neighborhoods do not match the eight
legal configurations (Figure 3.1). These new vertex configurations include the
patch that we used as an example of illegal patches in Chapter 3 (Figure 3.2).

We define generalized Penrose tilings to be those tilings which may be
generated by constructing the dual of pentagrids. The Penrose tilings that
we have discussed prior to this section are the simplest subclass of this larger
class of tilings. In particular, they are the only type of Penrose tiling with
“simple” matching rules; for any other value of

∑
γj, there will be multiple

possible decorations for each type of tile.
Socolar and Steinhardt [SS86] classify generalized Penrose tilings as lo-

cal isomorphism classes. Recall the property of local isomorphism defined in
Chapter 2: any finite patch that appears in any Penrose tiling appears an
infinite number of times in every Penrose tiling. We say that two tilings are
locally isomorphic if every finite patch of tiles in each occurs in the other. It
turns out that two generalized Penrose tilings with shift vectors ~γ and ~γ′ are
locally isomorphic if and only if∑

j

γj ≡
∑
j

γ′j mod 1

Hence we may decompose the class of generalized Penrose tilings into an un-
countable number of local isomorphism classes.
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Figure 4.7: A tiling generated as the dual of a pentagrid with
∑
γj = 1

2 .
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4.4.2 Multigrids

De Bruijn’s 1986 paper [dB86] generalizes the pentagrid method to multiple
dimensions. The multigrid method constructs an n-dimensional tiling as the
orthogonal dual of m grids in n-dimensional space. For pentagrids, n = 2 and
m = 5. We assume that m < n.

Each grid is an infinite collection of regularly spaced (n − 1)-dimensional
hyperplanes. (If n = 2, an (n− 1)-dimensional hyperplane is a line; if n = 3,
an (n − 1)-dimensional hyperplane is a plane, and so on.) A point ~x on the
grid satisfies ~εj ·~x+γ ∈ Z for grid vector ~ε and shift amount γ. Note that this
definition is identical to that for pentagrids; the only change is that ~x and ~ε
are now elements of Rn instead of R2. A multigrid consists of m such grids,
each of which is associated with a grid vector ~εj and a shift amount γj.

As with pentagrids, open n-dimensional faces in the multigrid correspond
to vertices in the dual tiling. The face E(~k) corresponding to an m-tuple of

integers ~k is the set of points ~x that satisfy

kj − 1 < ~ε · ~x+ γj < kj

for all 0 ≤ j < m. If E(~k) 6= ∅, then the vertex corresponding to ~k (which
we construct in a way similar to that used for pentagrids) appears in the dual
tiling.

The dual tiling of a multigrid consists of zonotopes. A zonotope is a poly-
tope (a generalization of polygons to multiple dimensions) with point sym-
metry whose faces also have point symmetry [Sen95]. A three-dimensional
zonotope is a zonohedron. For multigrids with n = 3 and m = 6, Socolar and
Steinhardt have developed a class of three-dimensional tilings using four types
of zonohedra: the rhombohedron, the rhombic dodecahedron, the rhombic
icosahedron and the rhombic triacontahedron [SS86].

We shall henceforth ignore these generalizations. We proceed considering
only simple Penrose tilings, that is, tilings dual to pentagrids whose shift
vectors satisfy the sum condition.
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Chapter 5

An Algorithm for the Empire
Problem

Pentagrids give us an algebraic approach to Penrose tilings. In this chapter,
we harness that algebraic power to develop an algorithm for determining the
empire of an initial patch.

5.1 Valid Sets

Recall from Chapter 4 that for each Penrose tiling by rhombs, there exists a
pentagrid that satisfies the sum condition (equation 4.2) such that the tiling
is dual to the pentagrid. Let the dual tiling for a pentagrid with shift vector
~γ be dual(~γ). For convenience, we will call the set of shift vectors satisfying
the sum condition P:

P =

{
~γ
∣∣

4∑
j=0

γj = 0

}

If ~γ ∈ P, then dual(~γ) is a Penrose tiling by rhombs.
We identify a tile with two grid numbers, r and s, and 5 line indices,

k0 . . . k4. We will say that a tile T = (r, s,~k), where ~k is a five-dimensional
vector whose components are the five line indices.

A shift vector ~γ is defined to be valid for a tile T if T appears in dual(~γ).
We define the valid set for a tile T to be the set

V (T ) = {~γ ∈ P | T appears in dual(~γ)}

46



We defer discussion of how to identify the valid set for each tile until Section
5.2. For now, we shall assume that we can calculate V (T ) for any tile T. Now
consider a patch of tiles P = {T1 . . . Tn}. The valid set for that patch consists
of the shift vectors that are valid for each tile in the patch:

V (P ) = V (T1) ∩ . . . ∩ V (Tn)

Note that this definition does not assume that the tiles of the patch are con-
tiguous.

In Chapter 2, we said that a tile T is forced by a patch P if T appears in
all tilings in which P appears. In our new terminology, a tile T is forced by
a patch P if, when a shift vector ~γ is valid for P , it is also valid for T . The
valid sets of T and P must then satisfy

V (P ) ⊆ V (T )

Note that if P is an illegal patch, then P trivially forces all possible tiles
because V (P ) is empty. We will assume that P is legal and hence that V (P )
is nonempty.

In the following sections, we develop an algorithm for identifying forced
tiles that works by testing inclusion of valid sets.

5.2 Constraints for Valid Sets

A tile T = (r, s,~k) corresponds to the intersection of lines kr and ks in grids r
and s, respectively. Theorem 5.1 gives necessary and sufficient conditions on
the shift vector ~γ such that ~γ is valid for T . In the theorem, ~εj is defined as
in equation 4.1:

~εj =

(
cos

(
2πj

5

)
, sin

(
2πj

5

))

Theorem 5.1. Let ~γ ∈ R5. ~γ is valid for a tile T = (r, s,~k) if and only if

kt − 1 < ~x · ~εt + γt < kt (5.1)

for t 6= r, s, where ~x is the simultaneous solution of

~x · ~εr + γr = kr (5.2)

~x · ~εs + γs = ks (5.3)
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Proof. Suppose that T appears in the tiling. Recall that we defined kt for
t 6= r, s to be

kt = d~x · εt + γte
We assume that either ~γ is regular or that we have perturbed ~γ such that
~x · εt + γt 6∈ Z. Then we have that

kt − 1 < ~x · ~εt + γt < kt

Now suppose that ~x satisfies 5.1. Then d~x · ~εt + γte = kt for t 6= r, s, so

T = (r, s,~k) appears in the tiling.

Note that each tile requires three constraints of the form 5.1, one for each
of the three possible values of t. For instance, if r = 0 and s = 1, we must
apply constraints for t = 2, t = 3, and t = 4.

By solving equations 5.2 and 5.3 for the components of ~x, we may rewrite
5.1 in terms of ~γ and ~k. The exact form of the solution depends on the values
of r, s, and t. If r − t ≡ t− s mod 5, the constraints take the form

frst(~k)− 1 < frst(~γ) < frst(~k) (5.4)

where, for a vector ~v = (v0, v1, v2, v3, v4),

frst(~v) =

{
1
τ

(vr + vs) + vt r − s ≡ ±1 mod 5
−τ (vr + vs) + vt r − s ≡ ±2 mod 5

(5.5)

In this case, we say that t is the symmetry grid for r and s. In a pentagrid,
the angle between grids r and t will be equal to that between s and t.

If r− t 6≡ t−s mod 5, then either r will be the symmetry grid for s and t
or s will be the symmetry grid for r and t. (The skeptical reader may confirm
this by hand.) We assume that r is the symmetry grid; if s is the symmetry
grid, simply swap r and s. The constraints take the same form as in 5.4, with

frst(~v) =

{
τvr + (vs + vt) s− t ≡ ±1 mod 5
− 1
τ
vr + (vs + vt) s− t ≡ ±2 mod 5

(5.6)

The functions frst are a notational convenience; it is useful to characterize
the constraints for a particular tile in terms of just ~γ and ~k. In the next
section, we will use each frst as the objective function in a linear program.
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Equations 5.4, 5.5 and 5.6 give necessary and sufficient constraints on ~γ
such that ~γ is valid for a tile T = (r, s,~k). We may now give a more formal
definition of the valid set for T :

V (T ) = {~γ ∈ P | frst(~k)− 1 < frst(~γ) < frst(~k), t 6= r, s}
The valid set for a patch is the intersection of the valid sets for each tile in
that patch.

The constraints on ~γ take the form of simple linear inequalities. The in-
equalities in equation 5.4 define a “slice” of R5; the valid set for n tiles is the
intersection of 3n such slices. This intersection defines a convex polyhedron in
R5.

5.3 Testing Valid Set Inclusion

Recall from Section 5.1 that in order to determine whether a tile is forced
by an initial patch, we must know whether the valid set for the patch is a
subset of the valid set for the tile. Theorem 5.3 is the key for deciding valid
set inclusion.

Define the valid set closure for a tile T = (r, s,~k) to be the valid set for a
tile with the strict inequalities in 5.4 relaxed:

V ′(T ) = {~γ | frst(~k)− 1 ≤ frst(~γ) ≤ frst(~k) for t 6= r, s}
Relaxing the inequalities explicitly includes the singular cases in which T does
not appear in all perturbations of ~γ. We continue to define V ′(P ) for a patch
P = {T1 . . . Tn} to be the intersection of the valid sets of T1 . . . Tn. Relaxing
the inequalities allows us to identify the boundaries of the valid sets, which in
turn will allow us to determine if one valid set includes another.

Consider the linear functions given in equations 5.5 and 5.6. Suppose we
could identify the maximum and minimum values of these functions within
the valid set closure for a patch P . Define maxrst(P ) and minrst(P ) to be
the maximum and minimum values of frst(~γ) for all ~γ ∈ V ′(P ), respectively.
Theorem 5.3 explains how these values may be used to determine if V (P ) ⊆
V (T ) for any tile T .

First, we must prove that valid sets and valid set closures are equivalent
for our purposes. The proof of the necessary result, Theorem 5.2, is straight-
forward but makes use of mathematical machinery beyond the scope of this
thesis. Hence we defer the proof until Appendix B.
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Theorem 5.2. Let T be a tile and P be a patch such that V (P ) and V (T ) are
nonempty. V (P ) ⊆ V (T ) if and only if V ′(P ) ⊆ V ′(T ).

Theorem 5.3. A tile T = (r, s,~k) is forced by a patch P if and only if

maxrst(P ) ≤ frst(~k) and minrst(P ) ≥ frst(~k)− 1 (5.7)

for t 6= r, s.

Proof. Suppose that T is forced. Then V (P ) ⊆ V (T ) and, by Theorem 5.2,
V ′(P ) ⊆ V ′(T ). Let ~γ ∈ V ′(P ) such that frst(~γ) = maxrst(P ) (frst(~γ) =

minrst(P )). ~γ ∈ V ′(T ), so frst(~γ) ≤ frst(~k) (frst(~γ) ≥ frst(~k) − 1). Therefore

maxrst(P ) ≤ frst(~k) (minrst(P ) ≥ frst(~k)− 1).

Now suppose that maxrst(P ) ≤ frst(~k) and minrst(P ) ≥ frst(~k) − 1 for

t 6= r, s Let ~γ ∈ V ′(P ). Then minrst(P ) ≤ frst(~γ) ≤ maxrst(P ), so frst(~k) −
1 ≤ frst(~γ) ≤ frst(~k). Also, ~γ ∈ V ′(P ), so ~γ ∈ P. Hence ~γ ∈ V ′(T ), so
V ′(P ) ⊆ V ′(T ), and by Theorem 5.2 V (P ) ⊆ V (T ).

By Theorem 5.3, it is simple to decide whether a tile is forced by a patch P
if we can calculate maxrst(P ) and minrst(P ) for each possible combination of
r, s and t. We can accomplish this task by rewriting the constraints on ~γ given
in equations 5.1, 5.5 and 5.6 as a linear program. A linear program consists
of a set of linear constraints and an objective function, a linear function that
we wish to maximize or minimize subject to those constraints. In this case,
the objective function will be one of the functions frst. Efficient algorithms
exist to solve linear programs, the most well-known of which is the Simplex
algorithm. [CLRS01]

Let us consider an example. Suppose our initial patch P contains just one
tile, T = (1, 4, ~k). The constraints on ~γ are

−τ (k1 + k4) + k0 − 1 ≤ −τ (γ1 + γ4) + γ0 ≤ −τ (k1 + k4) + k0

τk4 + (k1 + k2)− 1 ≤ τγ4 + (γ1 + γ2) ≤ τk4 + (k1 + k2)
τk1 + (k3 + k4) ≤ τγ1 + (γ3 + γ4) ≤ τk1 + (k3 + k4)

(5.8)

Take the case when ~k = (1, 0, 0, 0, 0). 5.8 becomes:

0 ≤ −τ (γ1 + γ4) + γ0 ≤ 1
−1 ≤ τγ4 + (γ1 + γ2) ≤ 0
−1 ≤ τγ1 + (γ3 + γ4) ≤ 0
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Adding more tiles to the patch adds more constraints to the program. We
must also include the sum condition as an equality constraint :

γ0 + γ1 + γ2 + γ3 + γ4 = 0;

We may now use a linear solver to find maxrst(P ) and minrst(P ) for any
combination of r, s and t. For example, for r = 1, s = 4 and t = 0, we find
that max140(P ) = 1 and min140(P ) = 0.

5.4 Algorithm for a Single Tile

In Section 5.5, we will present the algorithm for finding the empire of a patch.
For the moment, let us concentrate on a simpler question: given an initial
patch P and a tile T , is T forced by P? Sections 5.1, 5.2 and 5.3 provide all
the tools we need to answer this question. Suppose that P = {T1 . . . Tn} and

T = (r, s,~k). We require that the valid sets V (P ) and V (T ) be nonempty;
that is, there must exist tilings where P and T appear.

1. Determine the constraints on ~γ due to all Ti in P . Each tile will re-
quire three constraints of the form given in 5.4, in addition to the sum
condition as an equality constraint.

2. Use a linear solver to find minrst(P ) and maxrst(P ) for t 6= r, s.

3. Use Theorem 5.3 to determine if V (P ) ⊆ V (T ). If so, T is forced by P ;
else it is unforced.

Theorem 5.3 guarantees that the result of this algorithm will be correct.

5.5 Algorithm for the Empire

Our algorithm to determine if a single tile is forced may be generalized to an
algorithm for finding the empire of an initial patch. Suppose we are given
an example tiling that includes that a patch P = {T1 . . . Tn}. In practice, it
is very easy to find such an example by adjusting the pentagrid parameters.
Every tile in the empire must also appear in that example tiling — that is,
after all, the definition of the empire! Therefore we can find the empire of the
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patch by repeatedly running the algorithm for a single tile on each of a finite
set of tiles in the example tiling.

Suppose we are given an initial patch P = {T1 . . . Tn} and a set of tiles
S = {T ′1 . . . T ′m} to test for inclusion in the empire. We assume that there
exists some ~γ ∈ P such that ~γ is valid for P and for each tile in S. We can
save some time by calculating minrst(P ) and maxrst(P ) ahead of time.

1. Determine the constraints on ~γ due to all Ti in P . Each tile will re-
quire three constraints of the form given in 5.4, in addition to the sum
condition as an equality constraint.

2. Use a linear solver to find minrst(P ) and maxrst(P ) for each possible
combination of r, s and t.

3. For each tile T ′i in S, use Theorem 5.3 to determine if V (P ) ⊆ V (T ′i ). If
so, add T ′i to the empire.

The results will necessarily be a finite subset of the empire. Nonetheless,
this algorithm is the first to determine even a finite empire with complete
certainty. Minnick’s algorithm, for instance, found subsets of the finite empire
but could not guaranteee that all tiles in the finite empire were identified
[Min98]. The brute force algorithm in Section 3.3 suffered from the same
weakness. But Theorem 5.3 is strong enough to detect both when a tile is
part of the empire and when it is not.

Note that the algorithm does not differentiate between local and remote
empires. In fact, running this algorithm on just the initial patch will identify
the local empire and the remote empire. Moreover, the patch P need not be
one of the eight vertex configurations; it need not even be contiguous. The
algorithm will identify the empire of any legal combination of tiles.

Appendix A presents the results of running this algorithm on the eight
vertex configurations.
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Chapter 6

Conclusions and Future Work

The main contribution of this thesis is the algorithm presented in Chapter 5.
We have reduced the empire problem in Penrose tilings to linear optimization,
a well-defined problem for which efficient algorithms exist. Our algorithm is
the first to determine precisely which tiles are and are not included in the
empire of an initial patch. The results in Appendix A are striking for their
beauty and, in some cases, for the sheer number of tiles that are forced by a
just a handful of initial tiles.

Perhaps the most exciting aspect of this algorithm is its potential for gener-
alization. We expect that it will be straightforward to rewrite the language of
Chapter 5 for generalized Penrose tilings (Section 4.4.1) and tilings generated
by any multigrid (Section 4.4.2). We also hope to translate our results back to
tilings by kites and darts, although those prototiles do not exhibit the useful
algebraic properties of the thick and thin rhombs.

There are still many directions for future research. We have discovered
finite portions of the empires, but we lack a means of characterizing an empire
in its entirety. The patterns of the forced tiles are intriguing and well worth
further study. In particular, the S exhibits fractal-like patterns in its finite
empire (Figure A.5), but we would like to show that these patterns continue
ad inifinitum. Do similar patterns appear in other empires (assuming that
they do appear in the empire of the S)? A second avenue of research might
be called the “reverse empire problem”: given a set of a tiles S that appears
in some complete tiling, which patches force all of the tiles in S ∪ P? For
instance, suppose that S = ∅; then the set of patches P is precisely the set of
patches that have no empire besides the initial patch. If we add the further
constraint that P be contiguous, we have the problem of the princess patch:
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find the largest contiguous patch that does not force any tiles.
Despite the numerous questions that we raise in the preceding paragraphs,

we have made a significant advance in the study of the empire problem. The
elegant correspondence between pentagrids and Penrose tilings by rhombs lets
us capture the empire problem in mathematical terms and solve it using well-
known techniques in linear optimization. This powerful approach allows us to
find the complete empires of Penrose tilings for the first time.
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Appendix A

Empires of the Eight Vertex
Configurations

We have implemented our algorithm using a linear solver, lp solve1. The
following pages give the results of running the algorithm on the eight vertex
configurations in Figure 3.1. In each figure, the tiles in the initial patch are
yellow. Unforced tiles are not shown.

1http://groups.yahoo.com/group/lp_solve/
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Figure A.1: The empire of the D configuration.
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Figure A.2: The empire of the Q configuration.
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Figure A.3: The empire of the K configuration.
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Figure A.4: The empire of the J configuration.
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Figure A.5: The empire of the S configuration.
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Figure A.6: The empire of the S3 configuration.
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Figure A.7: The empire of the S4 configuration.
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Figure A.8: The empire of the S5 configuration.
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Appendix B

Proof of Theorem 5.2

The proof of Theorem 5.2 makes use of basic concepts in topology and con-
vexity; more information can be found in any introductory textbook, such as
[Lay82]. We will use the following notation:

• cl A is the topological closure of a set A.

• int A is the interior of a set A.

We define an open half-space to be the area on one side of a plane cutting
through Rn:

~a · ~x > b (B.1)

where ~a = {a1 . . . an} is normal to the plane and b is constant. The closure of
an open half-space is the corresponding closed half-space, defined by equation
B.1 with the strict inequality relaxed (that is, > replaced by ≥). An open
half-space is an open convex set; a closed half-space is a closed convex set. A
valid set (defined in Section 5.1) is the intersection of a finite number of open
half-spaces, while a valid set closure (defined in Section 5.3) is the intersection
of a finite number of closed half-spaces.

Lemma B.1. Let A and B be open convex sets such that A∩B is nonempty.
Then cl(A ∩B) = cl A ∩ cl B.

Proof. Let S = cl A ∩ cl B. As A and B are both open sets, it follows that
int S = A ∩B:

int S = int(cl A ∩ cl B)

= int(cl A) ∩ int(cl B)

= A ∩B
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S is convex because the closure of a convex set is convex, as is the intersection
of two convex sets. By [Lay82], cl(int S) = cl S if S is convex and intS 6= ∅.
Therefore

cl(A ∩B) = cl(cl(A) ∩ cl(B))

= cl(A) ∩ cl(B)

where the last step follows because the intersection of two closed sets is also
closed.

Lemma B.2. Let P = {T1 . . . Tn} be a patch such that V (P ) is nonempty.
cl(V (P )) = V ′(P ).

Proof. Follows from induction on Lemma B.1.

Lemma B.3. Let P be a patch such that V (P ) is nonempty. int(V ′(P )) =
V (P ).

Proof. V ′(P ) = cl(V (P )) by Lemma B.2. Hence int(V ′(P )) = int(cl(V (P ))) =
V (P ) as V (P ) is an open set.

Theorem B.1. Let T be a tile and P be a patch such that V (P ) and V (T )
are nonempty. V (P ) ⊆ V (T ) if and only if V ′(P ) ⊆ V ′(T ).

Proof. Suppose V (P ) ⊆ V (T ). By Lemma B.2, cl(V (P )) = V ′(P ) and
cl(V (T )) = V ′(T )). Hence V ′(P ) ⊆ V ′(T ).

Now suppose V ′(P ) ⊆ V ′(T ). By Lemma B.3, int(V ′(P )) = V (P ) and
int(V ′(T )) = V (T ). Hence V (P ) ⊆ V (T ).
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