
Virtual Machines: Features and Futures

by
Brian Robert Hirshman

A Thesis
Submitted in partial fulfillment of

the requirements for the Degree of Bachelor of Arts with Honors
in Computer Science

Williams College
Williamstown, Massachusetts

May 8, 2006

Contents

1 Introduction 1
1.1 Current Technology . 1
1.2 Future Unification . 1
1.3 How To Read This Thesis . 2

2 Virtual Machine Support for Languages 3
2.1 Lisp & Scheme . 3
2.2 Pascal . 5
2.3 Smalltalk . 6
2.4 Self . 7
2.5 Java . 8
2.6 Perl & Parrot . 9
2.7 Python . 11
2.8 CLR and .NET . 12
2.9 Other Virtual Machines . 13

3 Features of Virtual Machines 16
3.1 Platform Independence . 16
3.2 Paravirtualization . 18
3.3 Migration . 20
3.4 Dynamic Optimization . 22
3.5 Security . 23
3.6 Development . 25

4 The ++VM 27
4.1 Overview . 27
4.2 Tags . 27
4.3 Memory Management . 30

i

CONTENTS ii

4.4 Objects . 31
4.5 Opcodes . 32
4.6 Attributes & Annotations . 33

5 Object and Object Attribute Support 34
5.1 Object Layout . 35
5.2 Object Behavior . 38
5.3 Object Attributes . 40
5.4 Features of Objects . 41

6 Intermediate Value Support 45
6.1 Registers . 45
6.2 Register Windows . 51
6.3 Features of Registers . 53
6.4 Memory . 55
6.5 Intermediate Value Movement . 57
6.6 Features of Memory . 59

7 Tagged Memory 60
7.1 Tag Implementations . 60
7.2 Tag Usage . 61
7.3 Tag Features . 63

8 Opcodes 66
8.1 Opcode Format . 67
8.2 Opcode Execution . 68
8.3 Bytecode Instructions . 69
8.4 Control Operations . 70
8.5 Features of Opcodes . 73

9 Methods 77
9.1 Methods in the ++VM . 77
9.2 Kinds of Methods . 77
9.3 Method Behavior . 79
9.4 Method Attributes . 80
9.5 Returning From Methods . 81
9.6 Return Behavior . 82
9.7 Wound Calls . 82

CONTENTS iii

9.8 Features of Methods . 84

10 Code Support 86
10.1 Opcodes with Attributes . 86
10.2 Features of Attributes . 88
10.3 Annotation Opcodes . 89
10.4 Adopted Annotations . 91
10.5 Features of Annotation Opcodes . 91

11 Code Groups 94
11.1 Code Blocks . 94
11.2 Accessing Libraries . 97
11.3 Using Code Groups . 99
11.4 Features of Code Groups . 100

12 Control Flow 103
12.1 Logical Control in the ++VM . 104
12.2 Features of Logical Control . 105
12.3 Loops in the ++VM . 106
12.4 Features of Loops . 108
12.5 Exceptions in the ++VM . 110
12.6 Handling Exceptions . 111
12.7 Features of the Exception Mechanism 113

13 Conclusion 114
13.1 Features of the ++VM . 114
13.2 Future Work . 118

A Tags 120
A.1 Byte . 121
A.2 Short . 122
A.3 Word . 123
A.4 Long . 124
A.5 Ultra . 125
A.6 Float . 126
A.7 Double . 127
A.8 Reserved . 128
A.9 Standard Object . 129

CONTENTS iv

A.10 Object with Code . 130
A.11 List Element . 131
A.12 Class Object . 132
A.13 Future Object . 133
A.14 Future Object with Code . 134
A.15 Pointer . 135
A.16 Reserved . 136

B Opcodes 137
B.1 ILLEGAL INSTRUCTION [ILL] . 139
B.2 STACK OPERATIONS [STK] . 140
B.3 ADDITION [ADD] . 142
B.4 SUBTRACTION [SUB] . 144
B.5 MULTIPLICATION [MUL] . 146
B.6 DIVISION [DIV] . 148
B.7 MODULUS [MOD] . 150
B.8 NUMERIC INNER PRODUCT [NPR] 152
B.9 LOGICAL SHIFT RIGHT [LSR] . 153
B.10 ARITHMETIC SHIFT RIGHT [LSR] 155
B.11 LOGICAL SHIFT LEFT [LSL] . 157
B.12 BIT OPERATIONS [BOP] . 159
B.13 SET UNION [UNN] . 161
B.14 SET INTERSECTION [NTR] . 163
B.15 SET EXCLUSIVE OR [XOR] . 165
B.16 SET INNER PRODUCT [SPR] . 167
B.17 CONVERT [CON] . 168
B.18 CAST [CST] . 169
B.19 ONE OPERAND INSTRUCTIONS [OOP] 171
B.20 MOVE BETWEEN REGISTERS [MRG] 173
B.21 LOAD FROM OBJECT OFFSET [LOB] 175
B.22 STORE TO OBJECT OFFSET [SOB] 177
B.23 LOAD FROM POINTER OFFSET [LPT] 179
B.24 STORE TO POINTER OFFSET [SPT] 181
B.25 PREPARE NEW OBJECT [NEW] 183
B.26 OBJECT ATTRIBUTE [ATR] . 185
B.27 CREATE A METHOD [MTH] . 188
B.28 CREATE A CLASS [CLS] . 190
B.29 BLOCK START [SBK] . 192

CONTENTS v

B.30 BLOCK END [EBK] . 195
B.31 THROW AN EXCEPTION [TRW] 197
B.32 CATCH AN EXCEPTION [CAT] . 199
B.33 COMPARE DATA VALUES [CPD] 201
B.34 COMPARE REFERENCE VALUES [CPR] 203
B.35 COMPARE BOUNDS DATA [CBD] 204
B.36 COMPARE BOUNDS REFERENCE [CBR] 205
B.37 CONDITIONAL BRANCH [BNZ] . 206
B.38 CONDITIONAL BRANCH [BXC] 208
B.39 CALL METHOD [CAL] . 210
B.40 RETURN FROM METHOD CALL [RTN] 212
B.41 ENTER A MONITOR [MEN] . 214
B.42 EXIT A MONITOR [MEX] . 216
B.43 YIELD PROCESSOR CONTROL [YLD] 217
B.44 SYNCHRONIZATION POINT [SYN] 218
B.45 ANNOTATION [ANO] . 219
B.46 LOOP [LUP] . 221

Chapter 1

Introduction

As yet, there is no formal science of designing virtual machines. Instead, virtual
machine design has been ad hoc, a reaction to the current mismatch between hard-
ware and software. This thesis develops a specification for a thin, general-purpose
virtual machine that is sensitive to the needs of programmers as well as hardware
designers. Some readers may consider this thesis to be a blueprint for a novel target
virtual machine. Others may see this specification as a model for future hardware.
By studying the ++VM virtual machine, introduced in later chapters, this thesis
examines the strengths and establishes goals of virtual machine design.

1.1 Current Technology

For forty years, virtual machines have provided features that extend the capabilities of
simple hardware. Recently, though, virtual machines have begun to provide ever more
complex features, addressing problems such as security and platform independence.
These features, and many others, are addressed in Chapter 3. High-level languages
have often targeted virtual machines to take advantage of these features. Chapter 2
addresses several existing virtual machines, including Lisp, Pascal, Java, Perl, and
Python.

1.2 Future Unification

The remainder of this work specifies a new high-level language virtual machine, the
++VM. The ++VM is designed to be broad and general purpose virtual machine

1

CHAPTER 1. INTRODUCTION 2

and is not designed to be targeted by one particular language or one particular archi-
tecture. The ++VM is designed to be flexible enough to support a diverse collection
of languages. In doing so, it requires a number of features not found in high-level
language virtual machines today. Chapter 4 provides a brief overview of this virtual
machine.

The ++VM virtual machine creates a modern memory environment that provides
effective support for current high-level languages. Chapter 5 discusses object-oriented
support in the ++VM, while Chapter 6 addresses registers and other intermediate
values. Chapter 7 addresses the virtual machine’s tagged memory implementation, a
system designed to support both objects and intermediate values.

The ++VM uses a minimal instruction set. More information about the design of
the instruction can be found in Chapter 8, including the opcode layout and the kinds
of instructions that can be performed. Additional detail on methods, and method
invocation in particular, can be found in Chapter 9.

The ++VM also provides support for a number of advanced control structures.
Generally, these are brought about by the use of code attributes, as described in
Chapter 10, or via code groups, as described in Chapter 11. When combined, three
features allow for a more informed manner of addressing logical control flow. Chap-
ter 12 addresses these control flow issues like logic operations, loops, and exception
handling. By giving more compile-time information to the virtual machine, all of
these components allow the virtual machine to perform more efficiently.

This work concludes with a brief discussion of how hardware and software can
take advantage of the ++VM or other virtual machines.

1.3 How To Read This Thesis

There are many ways readers may find this work useful. Readers may wish to use the
table of contents to read about a particular aspect of the ++VM without examining
other features in detail. Other readers may wish to skip straight to the appendices
to find a bitwise description of the function that each ++VM opcode performs. Still
other readers may wish to skim the end of every chapter to understand the arguments
for specific design decisions. This thesis is designed to support all of these approaches.
Readers who choose to read only selections from this thesis may find it useful to
skim the overview chapter, Chapter 4, before reading specific chapters of interest, as
Chapter 4 presents a broad yet succinct overview of the ++VM.

Chapter 2

Virtual Machine Support for
Languages

In order to understand the state of current high-level language virtual machines,
it is necessary to conduct a comparative examination of different high-level language
virtual machines. Though the implementation of current high-level language machines
is vastly different than machines forty years ago, they are conceptually very similar.
Important languages in the history of virtual machines include Lisp, Pascal, Self,
Smalltalk, Java, Perl, Python, and .NET.

Though this survey of past virtual machines focuses primarily on high-level lan-
guage virtual machines, virtual machines have been used to attack a variety of other
problems. The concluding section of this chapter outlines other potential uses for
virtual machines.

2.1 Lisp & Scheme

2.1.1 Language

The Lisp language was perhaps the oldest language to run on a virtual machine. The
first Lisp programs were hand-compiled by John McCarthy at MIT in 1960, and were
meant to run specifically on the IBM 704 hardware. Since the Lisp language had a
powerful evaluation operation, it was more flexible than previously developed pro-
gramming languages. Since McCarthy’s initial Lisp design, the language has evolved
and split into a number of variants differentiated by syntax and features. Current

3

CHAPTER 2. VIRTUAL MACHINE SUPPORT FOR LANGUAGES 4

variants of Lisp include the Lisp precursor FLPL, developed in the late 1950s, the
later Franz Lisp of the early 1980s, and perhaps the most well-known variant, Scheme,
developed in 1975 by Sussman and Steele. Though Lisp was originally created with
a target architecture in mind, the language’s elegant syntax long outlived the hard-
ware for which it was designed. When that hardware, the IBM 704, disappeared,
Lisp programmers wrote virtual machines that emulated the 704’s architecture style
to continue using the Lisp language. Over time, Lisp virtual machines have been
implemented in a number of languages: early FLPL Lisp virtual machines were
implemented in Fortran, while later virtual machines for other variants have been
implemented in languages such as C [Joh78, Fat81, SG96].

2.1.2 Virtual Machine

The Lisp virtual machine was a register-based machine, with every “cell” in mem-
ory containing information in a car register and a related pointer in a cdr register.
The instruction set for the Lisp virtual machine was a direct outgrowth of the 704’s
instruction set. As the 704 instruction set was relatively simple, the Lisp virtual ma-
chine itself is relatively straightforward. Some variants of the Lisp language can be
implemented using a dozen or so opcodes, though implementations with side effects
require a handful of additional instructions [Fat81]. The majority of the Lisp opcodes
are devoted to data movement and method calling. Since the Lisp system was orig-
inally designed to mimic hardware behavior, the Lisp opcodes were only capable of
providing only low-level support for high-level language functions.

The Lisp virtual machine introduced a number of features that have been used
in many other subsequent virtual machines. Lisp allowed code to be interpreted at
runtime as opposed to being statically compiled, as its “eval” operation allowed the
virtual machine to evaluate a dynamically created expression. This allowed the Lisp
machine to have an elegant execution mechanism, and allowed the virtual machine
to easily support self-modifying code. Additionally, the Lisp virtual machine also
introduced a primitive form of just-in-time compilation. Later Lisp variants allowed,
and indeed encouraged, their implementers to compile Lisp code into machine-specific
languages as the code was executed. Additionally, the Lisp virtual machine was also
the first to introduce a garbage collection mechanism. Garbage collectors, found in
the vast majority of later virtual machines, free the programmer from having to worry
about dynamic memory allocation [Joh78, Ayc03].

CHAPTER 2. VIRTUAL MACHINE SUPPORT FOR LANGUAGES 5

2.2 Pascal

2.2.1 Language

The Pascal language was developed in 1970, by Niklaus Wirth. It was based on the
Algol programming language, and was initially designed for the CDC 6000 computer
family. However, Pascal quickly outgrew the single system for which it was designed,
and eventually was made into a platform-independent language with the introduction
of P-code. Though P-code was originally designed to simplify the compilation of
Pascal, it was not long before there were three platform-independent implementation
of Pascal P-code. Standard P-code or P-4 code, the first of these systems, is a
straightforward stack-based computation system. UCSD P-code was designed for the
execution of Pascal code on a small computer and was a very space- and memory-
conscious implementation. LASL P-code, the last of the systems, was designed for
large applications that would be time sensitive. These three systems helped Pascal
to gain widespread acceptance by the end of the decade [Wir93, Nel79].

2.2.2 Virtual Machine

The Pascal P-code virtual machine is a stack-based machine and runs using an in-
struction set of about sixty instructions. Stack-based machines like the Pascal virtual
machine execute instructions by pulling elements off of an internal storage area, per-
forming an operation, then pushing values back; many machines, the Pascal machine
among them, do not make registers available for user values. While the majority of the
Pascal instructions deal with memory movement or mathematical operations, there
are several instructions which perform relatively abstract operations such as testing
for the end of a file. Pascal has a number of unusual opcodes that were not used
in previous virtual machines and have rarely been used in subsequent ones. These
include operations that deal with sets, bit fields, and files, in addition to a number of
Pascal-specific addressing modes [PD82].

The virtual machine that ran the Pascal code introduced a number of new fea-
tures to high-level language computing. First, the Pascal virtual machine was the first
virtual machine to be designed for an imaginary architecture and not for real hard-
ware. This made it possible to run Pascal on any system that implemented a virtual
machine interpreter, regardless of the underlying chip, and this made the language
easily portable. Additionally, UCSD P-code was the first virtual machine language to
have code elements of a standard size, bytes, which led to more compact code storage
in memory. This RISC-like design decision would be adopted by almost all virtual

CHAPTER 2. VIRTUAL MACHINE SUPPORT FOR LANGUAGES 6

machine instruction sets in the future as it made instructions easier to understand.
Furthermore, the Pascal machine was the first machine to have primitive mathemat-
ical operations as part of its instruction set. It was not until the development of
the Pascal virtual machine that primitive math operations were included as a virtual
machine instruction as opposed to being shipped off to the host system via a method
call. This may have been related to the fact that the P-code machine was the first
virtual machine designed to be platform-independent, as it was not designed to use
native instructions. [Nel79, PD82].

2.3 Smalltalk

2.3.1 Language

Smalltalk was designed at Xerox PARC by a team of researchers including Dan Ingalls
in the 1970s. In contrast to Pascal, which was an imperative programming language,
Smalltalk was object-oriented. Smalltalk is a big system. Smalltalk was meant to be
a complete and independent programming environment, and for this reason needed to
duplicate much of the operating system’s functionality in order to achieve complete
platform independence. This meant that, in many ways, Smalltalk acted much more
like a hosted virtual machine than a high-level language one: much of the underlying
system was simply ignored by the Smalltalk environment and re-written using the
virtual machine. Perhaps the most well known current current Smalltalk implemen-
tation is Squeak, a small Smalltalk implementation developed in...Smalltalk [GR83b].

2.3.2 Virtual Machine

The Smalltalk virtual machine was a stack-based virtual machine, similar to the
machine used to run Pascal. The Smalltalk virtual machine used a bytecode, allowing
it to have 256 opcodes to control code execution. The vast majority of the Smalltalk
instructions manipulate the internal stack by pushing, popping, or manipulating stack
values. Additionally, many operations are related. A sizable percentage of Smalltalk
instructions are optimized instances of more general instructions; in fact, the language
defined less than fifty unique instructions. Smalltalk, like Pascal, provided support
for a number of primitive math operations; unlike Pascal, it allowed the behavior of
some virtual machine instructions to be changed with compiler modifications [GR83b,
GR83a].

The creation of the Smalltalk virtual machine marked a large shift in the role of

CHAPTER 2. VIRTUAL MACHINE SUPPORT FOR LANGUAGES 7

the virtual machine. First, Smalltalk was the first object-oriented virtual machine.
This meant that every data element in the virtual machine was stored and addressed
using a common object format. In addition, the Smalltalk compiler could modify
the behavior of some of the virtual machine bytecodes. Because of this, Smalltalk
allowed programmers to custom-tailor their environment with specific optimizations.
Additionally, the Smalltalk environment was meant to be dynamically reconfigurable.
Every Smalltalk method would be called via a message-passing scheme, and meth-
ods could be dynamically changed at runtime. Furthermore, the Smalltalk virtual
machine took on roles that were traditionally those of the operating system. The
Smalltalk machine sought to form a completely independent programming environ-
ment, and to do so even sought to create a platform-independent graphics kernel,
BitBlt. The message-passing scheme necessitated the development of much more
efficient just-in-time compilers. These rapid JITs were needed in order to achieve ad-
equate system performance, as interpreting Smalltalk opcodes was inordinately slow
if not downright impossible [WBC99, GR83b, Ayc03].

2.4 Self

2.4.1 Language

The Self language, developed in the late 1980s, was partially inspired by Smalltalk.
Like Smalltalk, Self was object oriented; unlike Smalltalk, Self was developed without
classes, meaning that every object could define its own behaviors. This was a rather
radical design decision, and posed a number of difficulties for the language imple-
menters who had do deal with the fact that systems might not have enough memory
to run inefficient implementations of the Self virtual machine. Self may not be as well
known as other high-level languages that run on virtual machines; the most notable
implementation of the Self system may the C++ Chambers implementation in the
early 1990s [ABC+, CUL89].

2.4.2 Virtual Machine

The self language runs on a stack-based virtual machine machine, similar to the type
of machine used to run Smalltalk. In contrast to Smalltalk, the Self virtual machine
operated using only eight unique instructions! These opcodes were designed to be as
flexible and as elegant as possible, even at the cost of being potentially less efficient
than opcodes in other languages because of their lack of specificity. Self used a byte to

CHAPTER 2. VIRTUAL MACHINE SUPPORT FOR LANGUAGES 8

hold every instruction, the low five bits of each opcode were used to store field indices
to facilitate memory loads. Of the eight opcode families in Self, four were used to
send messages between one object and another. By sending messages back and forth,
objects could invoke methods (such as addition) in order to compute intermediate
and final values [CUL89].

The Self virtual machine marked an interesting progression in the evolution of
the virtual machine. First, the Self virtual machine introduced the idea of per-object
annotations. Though these annotations provided information to the programmer
- and not to the runtime environment - they provided a way for programmers to
provide optional information about specific objects. Additionally, the Self machine
was the first major virtual machine to use multiple bits to tag memory. The Chambers
implementation of the Self virtual machine used four bits to tag memory, using tag
bits to distinguish between different types of data and pointer values. Lastly, the
Self virtual machine spurred another round of improvements in just-in-time garbage
collectors. This improvement helped to mitigate some of the slowdown related to the
design decisions of the language, though it took several generations worth of compiler
and just-in-time compiler design in order to create an effective system [ABC+, CUL89,
Ayc03]

2.5 Java

2.5.1 Language

The Java language was designed to meet a profoundly different need than earlier
languages: Java was designed to be a robust and secure system that would be portable.
Java was created at Sun in the early 1990s, the brainchild of a number of engineers
including James Gosling. Java was meant to run a secure environment that could be
easily ported to many different systems. One of the major causes of Java’s success was
the desire to run potentially untrusted code on the Internet; Java’s security system,
one of the virtual machine’s major innovations, allowed any user to run a untrusted
program safely. Java has gone through a half-dozen major revisions since its inception,
as more features and additional functionality were steadily added to the language;
however, these changes have not significantly changed the underlying opcodes or the
virtual machine. The most interesting Java virtual machine from a researcher’s point
of view is IBM’s Jikes virtual machine, a freely-available Java virtual machine which
has pioneered a number of changes to Java virtual machine design [GM96, Mac05].

CHAPTER 2. VIRTUAL MACHINE SUPPORT FOR LANGUAGES 9

2.5.2 Virtual Machine

Like the Pascal virtual machine, the Java virtual machine is a stack-based virtual
machine. The Java virtual machine stores each of its opcodes in a single byte, and
defines two hundred different opcodes for use in the virtual machine. The vast ma-
jority of the Java opcodes are for data movement or mathematical operations. The
primary reason for the preponderance of math opcodes is due to the fact that every
Java opcode specifies the type of its operands, a property that allows the virtual
machine to easily verify the type safety of the code which it is about to execute. Java
also included a native method interface, a process by which Java programs could call
methods written in other languages and run code outside of the confines of the virtual
machine [GM96].

The Java language introduced a number of new features to the virtual machine
community. As one of the first major high-level languages to stress security, Java
needed to have a virtual machine which was able to enforce the boundaries that
the language sought to impose. This was accomplished using a verifier, a system
that explicitly ensured that, for instance, a method would not reference a variable
to which it should not. To take advantage of this security policy, the Java opcode
set was designed for transport over the network. The compactness of Java’s class
structure and opcode set, as well as the importance of networking classes to the
standard virtual machine library, helped to make Java a leading environment for web
development. Yet another innovation was the fact that Java included a system for
invoking non-Java methods. This was done using a native method interface which
allowed Java methods to call non-Java methods and vice-versa. Furthermore, Java
was also among the first languages designed to be dynamically modifiable. One of its
major innovations of Java is that the runtime could be dynamically modified as new
classes to be loaded or defined while code was being execute. Lastly, the Java virtual
machine was the first virtual machine that was widely used by non-programmers due
to its appearance on the Internet. The Java virtual machine was partially responsible
for a resurgence of interest in virtual machines, and, for better or worse, it is probably
the most widely known virtual machine in use today [GM96, LY99, BCF+99].

2.6 Perl & Parrot

2.6.1 Language

Unlike languages such as Smalltalk or Java, Perl was initially designed to be a small
scripting language, though over time it has expanded to become a much more complete

CHAPTER 2. VIRTUAL MACHINE SUPPORT FOR LANGUAGES 10

language. Perl was developed by Larry Wall in 1987, and one of its fundamental design
goals was to make the “easy things easy and the hard things possible.” In order to do
so, the Perl environment allowed users to write code in an English-like manner and to
be as flexible as possible. The Perl6 implementation of the language, also known as
Parrot, includes a virtual machine that is a near-complete rewrite of the Perl virtual
machine, and involved a re-definition Perl data types and opcodes. As part of the
virtual machine rewrite, the Parrot development team attempted to combine Perl
opcodes with those of other scripting languages in order to make the Parrot system
capable of running a wide variety of languages [Ash05, Org05b, Sug02].

2.6.2 Virtual Machine

The Parrot Virtual machine is register based, like the Lisp virtual machine. Unlike
Lisp, the Parrot virtual machine is capable of defining an arbitrary number of registers
- and can actually define more registers than the host machine actually has - in order
to store intermediate values. Parrot also uses seven backup stacks to hold values
that are not held in registers. Additionally, the Parrot implementation of Perl has
a relatively large instruction set. Parrot uses a 32-bit opcode format, which allows
for a much larger instruction set than any previously seen virtual machine language.
The vast majority of these instructions were used to type specific operations, as the
Perl virtual machine typed its instructions in order to improve overall performance.
However, this large instruction set allows Perl to have instructions not found in other
virtual machines, such as opcodes to control the behavior of the garbage collector and
for string manipulation [Org05b].

There were a large number of virtual machine features that also differentiate Perl
from other languages. Parrot’s execution model for Perl6 is a model that contains
seven stacks and a large number of registers; unlike earlier systems that were either
purely stack based or register based, Parrot attempts to take advantage of both
approaches. Additionally, Parrot tries to treat exceptions and loops in the same way,
by using similar instructions to take advantage of the similarity of execution style.
Furthermore, though it is not necessary to assign types to variables when writing Perl
code, the Perl compiler and the Parrot virtual machine assign types to these variables
and optimize them variables in type-specific ways. Lastly, the Parrot virtual machine
has two intermediate languages, not one. Though a human user would be exposed to a
complex instruction set as the base programming level in Perl, the opcodes executed
by the virtual machine were actually those of a much simpler form. The Parrot
Assembly Language, as the programmer-level code was called, allowed for finely-tuned
hand coding in Perl and could lead to significant performance increases in places where

CHAPTER 2. VIRTUAL MACHINE SUPPORT FOR LANGUAGES 11

humans could provide more run-time information than the compiler could glean from
standard Perl code. The combination of all of these virtual machine features helped
to make Perl an important language for short scripting applications. [Ash05, Org05b].

2.7 Python

2.7.1 Language

Python - the name refers to Monty Python’s Flying Circus, not to the snake - was
created in 1991 by Guido van Rossum as a scripting language. Like Perl, Python was
meant to be a fast and easy language in which to write code, and its syntax is much
less restrictive than that of other languages. The original Python virtual machine
was written in C, though later virtual machines have been written in other languages
for speed or security. Free versions of Python are available from the Python Software
Foundation [Mar03, Org03].

2.7.2 Virtual Machine

The Python virtual machine is a stack-based machine, like Java and Pascal. Unlike
Java, the Python stack only holds references; should a program wish to perform a
math operation on a primitive value, a reference to that value will be pushed on
the Python stack, not the primitive itself. The Python virtual machine has about
the same number of instructions as Java and many fewer than Parrot. Much of the
decrease in the number of Python instructions is due to the fact that Python does
not require the same level of type information as is needed by the Java and Parrot
virtual machines. The instruction set has opcodes to explicitly build new classes and
methods [Org03, Hug97].

The Python virtual machine introduced a number of interesting features. First, it
provided opcode support for complex structures such as loops and iterators, making
them an integral part of the virtual machine. This provided additional high-level
information to the virtual machine and resulted in a significant increase in loop per-
formance. It also introduced the concept of in-place operations, operations that were
performed directly on the stack rather than popped off, computed, and pushed back
on. This improved performance. Lastly, Python also allowed “docstrings” into the
code, comments that could be attached to a Python objects at runtime. Like the
annotation system provided in Self, these docstrings provided a way for programmers
to include debugging information in runtime objects [Org03, YvR01].

CHAPTER 2. VIRTUAL MACHINE SUPPORT FOR LANGUAGES 12

2.8 CLR and .NET

2.8.1 Language

While .NET began as Microsoft’s response to Sun’s Java, it rapidly evolved to be
a more complicated form of virtual machine environment. The .NET environment,
originally created in 1998, used a common intermediate language to allow the virtual
machine to run multiple languages. In contrast to the Parrot project for Perl, not all
the languages that were brought under the .NET umbrella were traditionally run on
virtual machines. Some of these languages, such as Visual Basic and C#, had to be
slightly modified to work in the new system. In attempting to bring together so many
languages, Microsoft abandoned some of the functionality of each language but in so
doing created a system which had minimal conflicts with existing code. The resulting
product, which ran on a virtual machine known as the Common Language Runtime
or CLR, extended the functionality of virtual machines into new and potentially
interesting domains [Cor05b].

2.8.2 Virtual Machine

The .NET virtual machine, called the CLR, used a stack architecture to hold interme-
diate data values. The intermediate language that is executed on the CLR, called the
Common Intermediate Language or CIL, has about three hundred instructions. Even
though the CIL used a single byte to hold each instruction, it manages to have more
than 256 instructions because it uses one instruction to signal an extended instruc-
tion, an instruction represented using multiple instruction bytes. The CIL introduced
a number of interesting operations, including explicit tail calls for recursive methods
and methods to explicitly box and unbox primitives [NR302a].

The Common Language Runtime was a marked departure from past virtual ma-
chines for a variety of reasons. For one, the CLR was the first virtual machine that
was designed with the direct intention of supporting multiple languages. This design
decision added a whole new level of complication to the virtual machine, though even-
tually the CLR supported almost all the language features of the half-dozen languages
that it was designed to support. The CLR allowed programmers to write code in one
.NET-supported language, then read or modify these objects using code written in
another. Another new feature of the .NET virtual machine was the ability to di-
rectly access to memory via pointers. While past virtual machines had made memory
a completely abstract entity, .NET permitted directly to the underlying data struc-
tures if the code had sufficient privileges. Lastly, the behavior of the .NET verifier and

CHAPTER 2. VIRTUAL MACHINE SUPPORT FOR LANGUAGES 13

garbage collector could be firmly controlled by the programmer. These capabilities
broke some of the traditional bounds of virtual machine design, giving more freedom
to the programmer at the expense of potintially unsafe code [Cor05b, NR302a].

2.9 Other Virtual Machines

Though the majority of this work focuses on virtual machine support for high-level
languages, virtual machines have traditionally been used in a number of other realms.
This section highlights a number of ways in which virtual machines have been used
to support computation, including operating systems, hosted virtual machines, co-
designed virtual machines, and multi-programmed systems.

2.9.1 Operating Systems

The most common type of virtual machine is the operating system. Though normal
computer users might not think of the operating system as a form of virtual ma-
chine, it does provide many of the basic features of described above: it provides a
common set of operating system calls to guest programs, enforces a security policy,
and handles threading and synchronization. The operating system is so fundamental
to the modern concept of the computer that it is not often thought of as a virtual
system. From the perspective of a process running on the machine, however, much
of the hardware has been abstracted by the procedure calls of the operating system.
A process does not need to have a detailed understanding of the type of disk being
accessed; it only needs to know that an operating system provides one. Similarly, an
operating system enforces a security policy, by restricting file and memory access to
certain programs and users. If a user program attempt to access data improperly,
the operating system will cause that program to fail. Lastly, the operating system
provides kernel threads, allowing for multiple streams of execution to occur on the
processor. Threading libraries, such as pthreads, move thread support from the the
program layer to the layer below it [SN05].

Implementations of operating systems are both abundant and familiar, and are
the subject of numerous investigations. However, it may surprise the reader to think
that, without the help of the virtual machine currently running, this document could
not have been read or written!

CHAPTER 2. VIRTUAL MACHINE SUPPORT FOR LANGUAGES 14

2.9.2 Hosted Virtual Machines

A hosted virtual machine is designed to allow a system that uses one instruction set
to run on a system that uses another. When operating systems are designed, they are
optimized for a particular hardware instruction set architecture. Should a user wish
to run that operating system on a different type of hardware, a virtual machine will be
necessary to convert between the two architectures. The virtual machine will present
the guest operating system, the one that the user wishes to run, with an architecture
that feels like the one on which it is supposed to run; however, the host system for the
virtual machine will only execute its own instructions. The virtual machine can get
around this language barrier by emulating or translating from the guest instruction
set to the host’s instruction set, should the guest system attempt to execute an
instruction that cannot be immediately executed on the host system [SN05].

For instance, older versions of the Macintosh operating system will now be run
exclusively on hosted virtual machines. In June of 2005, Apple decided to abandon
its PowerPC chip architecture and use Intel hardware as the target for its operating
system. However, the Macintosh operating system, for most of the last decade, has
been designed for the PowerPC processor. In order to ensure backwards compat-
ibility between programs designed for its old and new systems, Apple hired Tran-
sitive Corporation to build a PowerPC emulator called Rosetta, a hosted virtual
machine that does binary translation to convert between PowerPC and Intel instruc-
tions [SAP05, Cor05a].

2.9.3 Co-designed Virtual Machines

Co-designed virtual machines are designed to run a new, innovative instruction set
architectures beneath a more compex or older instruciton set. Co-designed virtual
machines exist on the hardware chip itself and modify the instructions that the hard-
ware will execute. One use of co-designed virtual machines is in breaking down
complex instructions, such as those of the Intel x86 instruction set, into smaller units
that can be rapidly executed on the processor. The Intel instruction set architecture
is a relic of the 1980s, and many of its instructions are not optimized for pipelining
or simultaneous execution on modern processors. When breaking down complex in-
structions, co-designed virtual machines can take advantage of the virtual machine
optimizations to further increase performance. These optimizations can boost speed
and reduce power consumption, allowing for faster and more efficient processing of
instructions [SN05, Kla00].

One of the most well known co-designed virtual machines is the co-designed vir-

CHAPTER 2. VIRTUAL MACHINE SUPPORT FOR LANGUAGES 15

tual machine at the core of the Transmeta Crusoe processor. The Crusoe processor
converts Intel instructions to smaller instruction units, called molecules, allowing four
different CPU operations to proceed simultaneously. This facilitates out-of-order in-
struction execution, caching, and branch prediction, all of which will increase speed.
The code morphing software at the heart of the processor allows for the processor to
execute instructions more quickly and substantially save power. Many of the innova-
tions in co-designed virtual machines, which form the heart of the Crusoe processor,
have been adopted by Intel and other chip makers [Kla00, Cor05c].

2.9.4 Multiprogrammed Systems

Multiprogrammed systems are designed to increase the performance of previously
compiled programs, even programs designed to run on the same instruction set archi-
tecture as the host machine. A multiprogrammed system will take code that compiled
to executable form and re-optimize it to make it run faster. Though dynamically re-
compiling code may seem like a waste of time and space, it can result in a performance
increase. When a program is compiled statically, the compiler will not be able to de-
termine the characteristics of the program’s run-time behavior. A multiprogrammed
system, however, will be able to gather run-time information by taking advantage of
the profiling capabilities of a virtual machine. The multiprogrammed system can then
take advantage of optimization techniques of Section 3.4, such as block formation and
code reordering, to incorporating this run-time information into the code. A multi-
programmed system should be able to achieve better performance than running the
statically-compiled program in a standard environment. If implemented efficiently,
these modifications to the original code will more than make up for the overhead of
supporting the virtual machine [SN05].

Examples of multiprogrammed systems include various optimization engines such
as the Dynamo project at HP labs and the DynamRIO project at MIT. These sys-
tems attempt to optimize code performance as code is being executed, and in some
cases managed to achieve a 25% increase in benchmark performance. Because of the
possible performance improvement, some operating system designers are beginning
to thinking about including multiprogrammed system virtual machine techniques in
the creation of future operating systems [SN05].

Chapter 3

Features of Virtual Machines

Over the last forty years, hardware and software designers have come up with a
number of ways in which virtual machines can help manage this complexity. This
chapter highlights a number of virtual machine features, and highlights a number of
past and active research projects to take advantage of these features. Though this
survey of virtual machine features focuses primarily on high-level language virtual
machines, may of these features are useful in other types of virtual machines as well.
While the majority of the examples chosen in this chapter focus on applications
to high-level language virtual machines, many of these advantages apply to these
additional domains.

This chapter highlights past research in ways that virtual machines can help to
achieve platform independence, to support paravirtualization, to facilitate environ-
ment migration, to optimize code dynamically, to provide better security apparatus,
and to shorten hardware and software development cycles.

3.1 Platform Independence

Virtual machines provide platform independence, the ability to free a program from
a particular host machine, by isolating the running code from the vagaries of host
software and hardware.

16

CHAPTER 3. FEATURES OF VIRTUAL MACHINES 17

3.1.1 Software Isolation

Virtual machines often must provide support for an interface that would normally be
the responsibility host software such as the operating system. In order for a virtual
machine to be fully independent, its features must be available in all implementations
on all hosts. In practice, this means that virtual machines will commonly duplicate
much of the functionality of the host’s operating system. For instance, many high-
level language virtual machines define a policy for handling threads and assigning
priorities to processes, meaning that every virtual machine for that language includes
a thread library as an integral component. Other virtual machines have special ways of
opening and reading files in order to ensure that file reading is consistent regardless of
the host type. By replicating operating system behavior in this way, virtual machines
can ensure uniform behavior across multiple types of operating systems [SN05].

In some machines, the level of specification is more rigorous than in others. For
instance, in the Java language, general thread behavior is specified but some schedul-
ing details are left to the implementor. On the other hand, Smalltalk is completely
specified to the point that virtual machine designers are required to meticulously
implement a graphics kernel known as BitBlt. Though many virtual systems do not
go quite as far in other areas, most virtual machines have at least a standard way of
interfacing with the underlying system that allows for a degree of standardization in
operating system calls. Though using a call to any operating system is potentially
non-portable, virtual machines are able to achieve a large degree of uniformity by
restricting their guest programs to making relatively simple, commonly-supported
calls [LY99, GR83b].

3.1.2 Hardware Isolation

Equally important to the notion of platform independence is the idea that the virtual
machine insulates the guest program from the hardware. Many virtual machines
present guest programs with the instruction set of an abstract machine, but must rely
on the properties of the real machine to run it. If the real machine does not directly
support the behavior, the virtual machine is required to emulate the instruction and
break it down into smaller sections that can be run on the host platform. In these
cases, providing a consistent hardware environment allows the virtual machine to be
platform independent and to run programs in a more consistent manner [SN05].

For instance, the Java programming language specifies a particular standard of
floating-point arithmetic, ANSI 754, in order to ensure that a Java result will not
be biased by the behavior of the underlying hardware. These types of specifications

CHAPTER 3. FEATURES OF VIRTUAL MACHINES 18

occur in other virtual machines as well, and not just machines designed to run high-
level languages. In other virtual machines it is necessary to emulate the true contents
of certain status registers on the processor in order to achieve consistency. On virtual
machines designed to host operating systems on Intel chips, the two-bit privilege level
must be emulated to prevent a guest operating system from circumventing the virtual
machine and accessing the hardware directly [LY99, Uea05].

3.2 Paravirtualization

Virtual machines can also be used to run multiple programs on one machine using
a technique known as paravirtualization. Often, paravirtualization is used to run
multiple copies of the same program on a single virtual machine: each process in a
paravirtualized environment is led to believe that it has complete access to all com-
putation resources, though in effect the underlying virtual machine allocate hardware
resources as needed. Paravirtualization has major advantages: it can improve pro-
cessor utilization, memory utilization, and device utilization.

3.2.1 Processor Utilization

Virtual machines such as paravirtualized environments are able to improve processor
utilization. Before virtual machines came to prominence, running multiple copies of
a program in a secure environment meant running multiple copies of an operating
system; each of these operating systems had to run on a separate hardware system
and needed its own processor. If each of these systems used the processor for only a
small fraction of the time, then much of the machine computation time was wasted.
Paravirtualization, on the other hand, allowed multiple copies of a process to run
securely on the same system, allowing multiple copies of an operating system to
coexist on a single hardware system. In this arrangement, a large number of systems
could share a single processor, and, if scheduled appropriately, could increase resource
utilization. When the process idles in a paravirtualized environment, then the virtual
machine could replace it with a waiting process rather than waste computation cycles.
This allows paravirtualized systems to increase the number of processes that can run
on a single processor and increase processor use [WSG02].

Though processor utilization strategies have not been used in high-level virtual
machines, this technique of eliminating idle loops has been used with great success
in hosted virtual machines. For instance, the Denali project at the University of
Washington is able to maximize processor use by running hundreds of lightweight

CHAPTER 3. FEATURES OF VIRTUAL MACHINES 19

virtual processes on top of a hosted virtual machine without large degradations in
performance [WSG02, SGG05].

3.2.2 Memory Utilization

Paravirtualized virtual machines can also improve memory use. Before paravirtual-
ization, each copy of a process required nearly identical information about program
state and operating system state. This meant that memory and disk space was largely
identical across multiple machines. A paravirtualized environment, however, can hold
multiple copies of the same program. If the system is savvy, it can combine identical
data elements and save memory. For instance, a paravirtualized virtual machine can
combine all identical memory pages into a single, global page reference. Additionally,
each time a new machine is created, it can use a “copy on write” strategy in order to
minimize the amount of memory it must copy to create a new environment within the
virtual machine. All told, this technique can save a large amount of memory, vastly
decreasing the cost of supporting an additional virtual machine: the savings from
page sharing increases greatly in proportion to the number of supported processes,
and can rise to nearly seventy percent in some systems.

Though these memory reuse techniques have not been incorporated into high-
level language virtual machines, these techniques are heavily used especially in Xen.
The Xen system, developed at Cambridge, is designed to support several copies of
relatively large programs. It has also been used effectively in VMware’s ESX server
with a large degree of success. Both systems have shown that, when using efficient
memory sharing techniques, the marginal memory cost of adding an additional process
can be very small [Wal02, BDF+03].

3.2.3 Resource Scheduling

Paravirtualized virtual machines can also be used for scheduling the use of resources.
When processes on different physical devices have to use a shared resource, efficiently
scheduling the use of that resource may be costly. If the processes both run inside a
virtual machine, however, then the scheduling costs can be substantially decreased.
Using virtual machines, it may be possible to schedule resources which previously were
difficult to schedule efficiently. For instance, virtual machines can take advantage of
disk reads and writes from multiple processes in order to schedule them in a way that
minimizes disk head movement. Other virtual machines can open a single network
connection for multiple virtual processes, rather than opening one connection for each
separate process. One particularly interesting optimization is that of interprocess

CHAPTER 3. FEATURES OF VIRTUAL MACHINES 20

communication: in the absence of virtual machines, separate computers would have
to use the network to allow communication between two processes; using virtual
processes, a virtual machine can use shared memory on the host machine to do so,
saving a substantial amount of time. Though the scheduling algorithm itself may take
a substantial amount of time to execute, the performance benefits gained through
efficient scheduling often outweigh the cost of running a virtual machine [BDF+03,
WCSG05].

Though high-level language virtual machines have not been used for resource
scheduling, this technique has been used in system such as the Denali project at the
University of Washington. Denali takes advantage of the fact that they receive I/O
requests from many different processes and can schedule these requests in such a way
that disk utilization is maximized. [BDF+03].

3.3 Migration

Virtual machines can allow one environment to run simultaneously on multiple ma-
chines, and even to move processes from one host machine to another in a process
known as migration. Since a virtual machine presents an abstract environment to
its guest programs, virtual machines can be transparently swapped between differ-
ent hardware environments, a property that makes virtual machines very useful for
distributed computing. Environment migration can be used for several purposes,
including load balancing, machine swapping, and failure protection.

3.3.1 Load Balancing

As was addressed in the previous section, one of the major advantages of virtual
machines is that they can combine a number of computationally inexpensive processes
on the same physical hardware in order to achieve better performance. The converse is
also true: virtual machines can be used to distribute the execution of computationally
intensive processes across multiple machines in order to achieve better throughput.
If some physical machines in a network are not being fully utilized, a virtual machine
can realize this and reshuffle processes across different hardware systems. In this way,
virtual machines can achieve more consistent levels of throughput in a network, rather
than having some physical processors idle while others are overloaded. Since virtual
machines allow computation to be done in a platform independent manner, the virtual
machine will not have to care what type of hardware or operating system is in place
on any machine that is doing the computation; networks can be heterogenous [CN01].

CHAPTER 3. FEATURES OF VIRTUAL MACHINES 21

Load balancing techniques, though not used in high-level virtual machines, have
been successfully implemented in Xen and other virtual machine systems [BDF+03].

3.3.2 Machine Swapping

Virtual machines, in addition to distributing computation, can help facilitate the dis-
tribution of users throughout the network. As true virtual machines can be migrated
from system to system without the user ever noticing, virtual machines have the po-
tential to make the operating environment as mobile as the users themselves. In most
modern networks, users can log into any physical machine and see the same desktop
environment published to their desktop. Computation, on the other hand, is usu-
ally tied to the particular physical machine. Using a virtual machine can guarantee
that computation results will be the same, no matter what type of physical machine
is being used. If the user moves, the computation environment will stay the same
since the environment will be independent of the physical device. In this way, virtual
machines can help users move between physical machines without penalty [CN01].

Though high-level language virtual machines do not facilitate machine swapping,
this technique has been used on a number of virtual machine systems, including Xen.
If a machine appears to be overloaded, the Xen system will attempt to offload a
Xen process to another physical machine in order to achieve better overall through-
put [BDF+03].

3.3.3 Failure Protection

If a virtual machine facilitates environment migration, then it can provide a fault
tolerant mechanism and help software recover from hardware failures. When a vir-
tual machine is used for fault protection, it is known as a hypervisor. No piece of
hardware is ever perfect, and over time hardware will break. In a standard computing
environment, if the CPU fails then it will bring down all processes that it is running
at the time. If this happens, some critical processes may crash and data can be
lost. A hypervisor prevents this form of catastrophic system failure by replicating the
execution of a primary processor on other processors monitored by the virtual ma-
chine. Periodically, the hypervisor will suspend the process and synchronize results
across all backup processors. If the primary processor fails at any point, one of the
backups takes over. While this hypervisor system is rather inefficient - it duplicates
all computation - it can withstand hardware failures that would bring down other
processes [CN01].

CHAPTER 3. FEATURES OF VIRTUAL MACHINES 22

Though this technique has also not been used in high-level language machines, it
has been explored using virtual machine for user programs that must not fail, such as
those for the space shuttle and other programs. A form of failure protection developed
by Thomas Bressoud was about twice as slow as standard computation [BS96].

3.4 Dynamic Optimization

Virtual machines can use dynamic information to optimize code in order to improve
performance. While dynamic optimization is not yet able to improve code execution
to equal the speed of highly-optimized, platform-specific code, dynamic optimization
techniques can vastly improve program performance. By taking advantage of run-
time information and by recording code behavior, a virtual machine can selectively
optimize and improve code execution speed dramatically. Virtual machines commonly
perform two types of dynamic optimizations, platform independent optimizations and
platform dependent optimizations.

3.4.1 Platform Independent Optimizations

Virtual machines perform several platform-independent operations, such as the prop-
agation of constants, the hoisting of loop invariants, and the creation of superblocks.
In constant propagation and loop invariant hoisting, the virtual machine is able to use
its runtime information about program behavior in order to make assumptions about
the likely value of a variable. This information, gathered through runtime profiling,
is incorporated directly into the optimized code to allow the code to run more quickly
in the general case. When formulating blocks and superblocks to optimize, the vir-
tual machine can gather statistics about certain paths through the program code and
optimize these pathways accordingly. In this case, the runtime information suggests
which pathways to optimize heavily, which pathways to optimize lightly, and which
pathways to ignore. These optimizations will typically double or triple code execution
speed, and occasionally boost performance by an order of magnitude [SN05].

3.4.2 Platform Dependent Optimizations

A just-in-time compiler, also known as a JIT, can take advantage of features on the
host system to achieve better performance. A JIT takes platform-independent byte-
codes as input and compiles them to a system-specific form using a process similar to
that used by a traditional compiler. In contrast to bytecode interpreters, which often

CHAPTER 3. FEATURES OF VIRTUAL MACHINES 23

execute only one bytecode at a time, a JIT is able to optimize multiple bytecodes at
once. JITs can achieve better performance by making use of hardware capabilities
not specified in a virtual machine, even reordering instructions in order to take better
advantage of underlying hardware. Though JITs use many techniques used by tra-
ditional compilers, such as peephole optimization and whole program optimizations,
they must use extremely fast algorithms to do so, since the time spent optimizing the
platform-dependent code increases execution time. JIT optimizations often speed up
performance by one or two orders of magnitude, even when accounting for the over-
head of running the just-in-time compiler while the program in running [SN05, Ayc03].

3.4.3 Ordering of Optimizations

Most virtual machines perform dynamic optimizations in stages. Often, the virtual
machine will begin by interpreting one bytecode at a time, and profiling the executed
code to build up run-time information. If a chunk of code is commonly executed, then
it will be optimized using simple platform-independent techniques. If it is used even
more frequently it may be optimized in stages, using iterative improvement techniques
to further improve code quality. Virtual machines often will not perform extensive
optimizations on the entirety of the guest program, due to the overhead of having
to perform those optimizations. Additionally, heavily-optimized code generally can
consume a large amount of space. There are some virtual machines, though, that
will only execute code that has been compiled and will not interpret anything; these
virtual machines, such as the Gambit system for Scheme, will compile the bytecode
to a machine-dependent form before running any code. As time goes on, however,
these virtual machines will use the JIT to recompile the bytecode, taking advantage
of the increasing runtime information available [SN05, Tai98, FM90].

3.5 Security

While virtual machines provide a method for platform independence, they also provide
a mechanism for enforcing a security policy. Since virtual machines operate as an
intermediate layer between the user program and the operating system, a security
policy implemented by a virtual machine can restrict hardware access or enforce data
protection mechanisms. Virtual machines have approached this problem in four ways,
via internal controls, via external access restrictions, using runtime analysis, and
via program logging. Many virtual machines combine these approaches for stronger
security.

CHAPTER 3. FEATURES OF VIRTUAL MACHINES 24

3.5.1 Internal Controls

Programs that run on virtual machines often run in “sandboxes”, restricted envi-
ronments that isolate the program from the rest of the system. Virtual machine
sandboxes typically implement a number of internal controls as well. For instance,
security policies are enforced by performing checks on pointers, ensuring that all
pointers are valid references. Equally important, security policies can verify data
types, ensuring that data elements are not treated as references and that references
are appropriately typed. Security policies can also protect a program’s internal data
by preventing another program from accessing its data. Lastly, the security policy
must ensure that the program never interferes with the virtual machine’s internal
code; otherwise the security policy could be exploited or compromised entirely. If a
sandboxed program attempts to violate any of these aspects of the security policy,
the virtual machine can terminate it [SN05, CN01].

High level language virtual machines typically have a number of internal controls.
For instance, Java has support for array bounds checking to ensure that users do not
try and access invalid values. Some virtual machines support data access restrictions
at a more abstract level, such as scoping rules for variables and methods.

External Access Restrictions

The virtual machine “sandbox” consists of two parts, the virtual machine core and
the security manager. The virtual machine core is the part of the virtual machine that
is trusted implicitly and creates a secure environment for user code. On many virtual
machines, the core consists of the virtual machine’s code loader and execution engine,
though more advanced virtual machines may also include a suite of standard libraries
as well. The security policy is used to monitor what types of files are loaded into the
system. For instance, well-designed security manager should forbid programs from
loading arbitrary files from the hard drive or the network; only trusted components
and trusted programs should be allowed to do so. More elaborate virtual machines
may have more sophisticated security policies that will allow for specific programs
to have more fine-tuned control rather than blanket loading privileges. Anything
that is not in the trusted core is usually examined by a verifier, a virtual machine
component that ensures that the loaded code is statically safe or has appropriate
runtime checks [SN05].

For many years, high-level language virtual machines provided few restrictions on
ways to access outside resources. With the advent of the Internet, however, this sort
of monitoring became essential in order to protect a computer from malicious attacks

CHAPTER 3. FEATURES OF VIRTUAL MACHINES 25

by imported code. The Java Virtual Machine probably provides the most complete
security policy of any high-level system.

3.5.2 Monitoring

Some high-level language virtual machines have the ability to run code that is un-
trusted, programs that cannot be verified by a virtual machine’s security manager.
Typically, these programs have pointers, casts, or indirect loads that do not follow
standard techniques. Though untrusted programs may be perfectly safe, they cannot
be statically checked and therefore cannot be guaranteed. In order to allow a pro-
gram to run untrusted code, the user must explicitly relax the controls on the runtime
environment, allowing the virtual machine to load and execute the code [SN05]

The ability to run untrusted code is not a very common property, mostly because
security is so important. In high-level language virtual machines, this property is
only found in the C# virtual machine [NR302a, NR302b].

3.5.3 Logging

Virtual machines are also capable of logging activity occurring on the virtual machine,
allowing administrators or other qualified users to understand how a security breach
occurred. Though many programs log events for security reasons, attackers who man-
age to compromise the program can also compromise the logging scheme. By doing
the logging within the virtual machine, however, the record keeping is more securely
implemented. If the program crashes, the virtual machine will be able to continue to
log events. If enough information is logged when the program is executing, it may be
able to reconstruct the execution of a virtual system and replay the process by which
a system was attacked. While this is especially important in system virtual machines,
which host entire operating systems as well as guest programs, logging remains an
important though less explored service in high-level language machines [CN01].

As of yet, high-level language virtual machines do not implement logging, possibly
due to the additional performance overhead that logging may entail. Logging is
typically used by virtual machine monitors such as Xen [CN01].

3.6 Development

The standardization provided by a platform-independent system can significantly
simplify the task of programming by decreasing the amount of code that needs to

CHAPTER 3. FEATURES OF VIRTUAL MACHINES 26

be written and increasing project development speed. Virtual machines cut down
on the volume of code created by allowing the designer to target a single instruction
set. If the code were designed for many conventional systems, specialized code would
be necessary to handle each specific operating system and potentially each specific
hardware architecture. Code designed for virtual systems need only have one version,
since the guest running on the virtual machine need not know anything about its
host. Because the amount of code that needs to be developed is potentially smaller,
project design can proceed much more quickly. Since a significant percentage of total
project development time can be spent spent tracking down porting bugs, languages
that run on virtual machines often do not incur this overhead. Targeting a virtual
machines can often increase code development speed since a development team need
not focus on code portability [SN05].

Chapter 4

The ++VM

The remainder of this work presents the ++VM, a high-level language virtual ma-
chine that highlights features described in previous chapters. The ++VM is designed
to combine the best low-level features found in multiple languages. One of the major
design goals of the ++VM is the creation of a flexible instruction set which integrates
easily with multiple high-level languages. This chapter gives a summary of the fea-
tures available in the ++VM, including tag support, memory management, object
support, opcode classes, and annotations.

4.1 Overview

Figure 4.1 shows a general overview of the links between the different components of
the ++VM, highlighting many of the features that will be discussed in later chapters.

4.2 Tags

The ++VM has fourteen different tags: seven data tags and seven reference tags.
These tags are stored in parallel with the data using tagged memory. For more
information about the tagging system, see Chapter 7 and Appendix A.

4.2.1 Data Tags

The ++VM supports seven data tags. Five of these are used to represent integers
with widths from 8 to 128 bits, and two of these tags are used to store floating point
values. One data tag is reserved for future extensions.

27

C
H

A
P

T
E

R
4
.

T
H

E
+

+
V

M
28

X X X X X X X N

63 0

0 0 1 0ccr

X X X X X X X X

63 0

1 0 1 1class

X X X X X X X X

63 0

0 0 1 1pc

X X X X X X X X

63 0

1 0 0 0code

X X X X X X X X

63 0

1 X X Xthis

...

63 0

...others

Thread Registers

R R R R R 0 0 0

63 0

1 0 1 1class BYTE heap

R R R R R 0 0 0

63 0

1 0 1 1class WORD heap

R R R R R 0 0 0

63 0

1 0 1 1class LIST free

R R R R R 0 0 0

63 0

1 0 1 1class RESERVED stack

Trap

0 0 0 0 0 0 0 R 0 0 0 0 0 0 0 R

63 48

ccr

0 0 0 0 0 0 0 E 0 0 0 0 0 0 0 F

47 32

ccr

0 0 0 0

3 0

tag

0 0 0 0 0 0 0 U 0 0 0 0 0 0 0 V

31 16

ccr

0 0 0 0 0 0 0 Z 0 0 0 0 0 0 0 N

15 0

ccr

Condition Codes

X X X X X X X X

63 0

0 X X Xunused called ...

X X X X X X X X

63 0

0 X X Xunused called %d2

X X X X X X X X

63 0

0 X X Xcaller %d6 called %d0

X X X X X X X X

63 0

0 X X Xcaller %d5 unused

X X X X X X X X

63 0

0 X X Xcaller ... unused

X X X X X X X X

63 0

0 X X Xcaller %d7 called %d1

Window

X X X X X X X X

63 0

X X X Xcode heap

X X X X X X X X

63 0

X X X Xobjects heap

X X X X X X X X

63 0

X X X Xslack free

X X X X X X X X

63 0

X X X Xframes stack

Memory

X X X X X X X N

frame start frame end

1 0 0 0current

X X X X X X X X

frame start frame end

1 0 0 0frame

X X X X X X X X

frame start frame end

1 0 0 0caller

...

frame start frame end

1 0 0 0others

Frame Stack

X X X X X X X X

63 0

0 0 1 0header

X X X X X 0 0 0

start end

1 0 0 0context

X X X X X 0 0 0

+ ... end

1 0 0 0associated thread

X X X X X 0 0 0

63 0

1 X X Xclass FRAME

X X X X X 0 0 0

+ ... + ...

X X X Xlocals

... 0 0 0

+ ... + ...

X X X Xstack

Frame

X X X X X X X X

63 0

0 0 1 0header

(X) (X) (X) (X) (X) (0) (0) (0)

63 0

(1) (X) (X) (X)(code)

...

63 0

...instance vars

X X X X X X X X

63 0

X X X Xinst var 0

X X X X X 0 0 0

63 0

1 X X Xassoc obj

X X X X X X X X

63 0

X X X Xinst var N

Object

X X X X X X X X

63 0

0 0 1 0header

X X X X X 0 0 0

start + 63

X X X Xcontext

X X X X X 0 0 0

+ ... end

X X X Xframe stack

X X X X X 0 0 0

63 0

1 X X Xclass THREAD

X X X X X 0 0 0

start + 63

1 0 0 0code block 192

... 0 0 0

+ ... + ...

1 0 0 0other blocks

Thread

X X X X X X X X

63 0

0 X X X%d0

X X X X X X X X

63 0

0 X X X%d7

X X X X X X X X

63 0

X X X X%r0

X X X X X X X X

63 0

X X X X%r7

Context

X X X X X X X X

63 0

X X X Xregister

Register

 V A L U E

63 0

T A Gvalue

Tag

X X X X X X X X

63 0

0 0 1 0header

X X X X X 0 0 0

start end

1 0 0 0code pointer

...

+ ... + ...

...static vars

X X X X X 0 0 0

63 0

1 X X Xsuper class

X X X X X 0 0 0

starct + 63

1 0 0 0code block 128

... 0 0 0

+ ... + ...

1 0 0 0other blocks

Class

0 0 1 1 1 0 0 0 0 0 FRQ FRQ E C V V

start +15

start block

RES RES RES RES PAR PAR CON CON PMZ PMZ PMZ INL INL CSH CSH CSH

+16 end

exitension

X X X X X X X X X X X X X X X X

start +15

block opcodes

X X X X X X X X X X X X X X X X

+ ... end

block opcodes

0 0 1 1 1 0 0 1 B B D D D D D D

start end

end block

Block

X X X X X X X X

63 0

0 0 1 0header

X X X X X X X X

start + 15

0 0 1 0opcode

X X X X X X X X

+ 16 + 31

0 0 1 0opcode

X X X X X X X X

63 0

1 X X Xclass CODE

X X X X X X X X

+ ... end

0 0 1 0opcode

Code

X X X X X X X X

63 0

0 0 1 0header

X X X X X 0 0 0

start + 63

1 0 0 0first method code

X X X X X 0 0 0

+ ... end

1 0 0 0last method code

X X X X X 0 0 0

63 0

1 X X Xclass VTABLE

X X X X X 0 0 0

start + 63

1 0 0 0code block 64

... 0 0 0

+ ... + ...

1 0 0 0other blocks

Vtable

0 0 1 0 1 1 0 1 Z Z M M B B P P

start +15

loop

RES RES NRL NRL PAR PAR GTH GTH PMZ PMZ PMZ REG DIR DIR ARR ARR

+16 end

attributes

0 1 X X X X X X ATR ATR ATR ATR ATR ATR ATR ATR

start end

initialize block

0 1 X X X X X X ATR ATR ATR ATR ATR ATR ATR ATR

start end

compare block

0 1 X X X X X X ATR ATR ATR ATR ATR ATR ATR ATR

start end

update block

0 1 X X X X X X ATR ATR ATR ATR ATR ATR ATR ATR

start end

body block

Loop

 O P C O D E A T T R I B

15 0

word 0

E X T E N S I O N W O R D

15 0

word 1

Opcode

0 0 0 0 0 0 0 0 A T T R I B

15 0

word 0

E X T E N S I O N W O R D

15 0

word 1

Attribute

0 0 1 1 1 0 0 0 1 1 FRQ FRQ E C V V

start +15

start block

RES RES RES RES PAR PAR CON CON PMZ PMZ PMZ INL INL CSH CSH CSH

+16 +31

exitension

LIB LIB LIB LIB LIB LIB LIB LIB LIB LIB IND IND IND IND IND IND

+32 end

library index

0 0 1 1 1 0 0 1 B B D D D D D D

start end

end block

Library

0 0 1 0 1 1 0 0 T N N N N N N N

start +15

opcode

I I I I I I I I I I C RES RES RES RES RES

+16 end

exitension

X X X X X X X X X X X X X X X X

start +15

annotation

X X X X X X X X X X X X X X X X

+ ... end

annotation

Annotation

F
ig

u
re

4.
1:

T
h
e

+
+

V
M

CHAPTER 4. THE ++VM 29

Byte A byte is an unsigned 8-bit integer. This is large enough to store one ASCII
character. Memory in the ++VM is byte addressable.

Short A short is an unsigned 16-bit integer. This is large enough to store one Unicode
character.

Int An int is a signed 32-bit integer.

Long A long is a signed 64-bit integer. This is the preferred computational unit in
the ++VM, and is also the register size.

Ultra An ultra is a signed 128-bit integer. Ultras are stored in little-endian format
using two memory locations or registers, and must be aligned on a 16-byte
boundary.

Float A float is a signed 32-bit floating point number, IEEE 754 standard.

Double A double is a signed 64-bit floating point number, IEEE 754 standard.

4.2.2 Reference Tags

The ++VM has seven reference tags. Six of these tags are object tags, references
to collections of data containing a number of header fields in addition to the object
information. The remaining tag is a pointer tag, a general pointer to any memory
address. For more information about tags, see Chapter 7 or Appendix A; for more
information about objects, see Chapter 5.

Object An object reference is a 64-bit reference to a long-aligned object. The asso-
ciated object pointer of this object points to the object’s class, as is common
in many object-oriented languages. The object does not have a code pointer.
This tag is the generic object which will be the workhorse of the ++VM virtual
machine. It is the default tag created when objects are allocated.

Object with Code An object with code reference is a 64-bit reference to a long-
aligned object. The associated object pointer refers to the object’s class. The
object has a code pointer which points to methods which have been just-in-
time compiled for this particular class instance. This tag can be used when a
complicated object will be accessed frequently but modified rarely, and thus is
a good candidate for constant folding and other object-specific optimizations.

CHAPTER 4. THE ++VM 30

List Element A list element reference is a 64-bit reference to a long-aligned, Lisp-
like object. The associated object pointer points to either an Object or an other
List Element, not to a class. The class for a list element can be retrieved by
checking a per-thread trap vector. List elements do not have a code pointer.
A list element can be used to minimize the amount of representation overhead
needed for storing list structures.

Class A class reference is a 64-bit reference to a long-aligned class. The associated
object pointer of this class points to the class’s superclass. The code pointer of
this class points to the methods of the class. A class contains the static variables
and generic code available to its instances.

Future Object A future object reference is a 64-bit reference to a long-aligned ob-
ject which awaits computation. The associated object pointer of this object
points to the object’s class, as is common in many object-oriented languages.
The object does not have a code pointer. Future objects and lazy evaluation
may be helpful in multithreaded environments.

Future Object with Code A future object with code reference is a 64-bit refer-
ence to a long-aligned object that has not yet been computed. The associated
object pointer points to the object’s class. Additionally, the object has a code
pointer which points to methods which have been just-in-time compiled for this
particular class instance. This object tag is identical to the future object except
for the additional code pointer.

Pointer A pointer is an arbitrary 64-bit pointer to any location in memory. The
values to which pointers point do not have to be long-aligned. A pointer can be
used to perform operations which might not be safe for garbage collection, but
the objects on which these actions are performed should be pinned in place to
avoid invalid memory references after garbage collection.

4.3 Memory Management

There are three major components to the ++VM memory management system. For
intermediate values, it uses a series of registers and a stack. For more permanent
values, the machine uses either an object-oriented or pointer-based storage technique.
The virtual machine also provides a number of support registers, called machine
registers, which facilitate machine execution. For more detailed information about
memory management, see Chapter 6.

CHAPTER 4. THE ++VM 31

4.3.1 Intermediate Values

The ++VM has sixteen registers to store intermediate values, divided into two groups.
Eight registers are data registers, and are used to hold and manipulate data elements
directly. The remaining eight registers are reference registers, and are used to manipu-
late reference values. Since there may not be enough registers to hold all intermediate
computation values, the virtual machine also provides a stack. All registers, and all
stack elements, are tagged.

4.3.2 Additional Storage Areas

There are two main ways to access data in the ++VM, via a field offset from an
object or via a pointer. The primary way to access memory in the ++VM is via
an object offset. As components in the system can be represented using objects, the
object offset notation allows easy access to memory locations. The pointer reference
tag allows the ++VM to access arbitrary memory locations, potentially including
object header fields. All memory locations are tagged.

4.3.3 Machine registers

The ++VM has a number of registers which store information about the internal state
of the virtual machine. These include registers for keeping track of the current object,
class, frame, and thread, as well as information about executing code. Additionally,
the ++VM uses a condition code register to store result state from the last instruction
that was executed. This register is used for conditional branch tests.

4.4 Objects

Objects are essential to the functioning of the ++VM All components in the ++VM
system can be described using the object format. For more information about objects,
see Chapter 5.

4.4.1 Header

Every object requires a 64-bit header in order to store information associated with
that object. The first part of this field contains information such as object size,
object lock information, and various bits for the garbage collector to use. The second

CHAPTER 4. THE ++VM 32

part is an associated object pointer, which can point to an object’s class or a class’s
superclass.

4.4.2 Code

Some objects have code associated with them, which can be accessed via an object’s
code pointer. For instance, all class objects have access to the code which is needed
by the instances of that class. However, some object instances may also have code
associated with them as well.

4.4.3 Attributes

Instructions that create or modify objects can use attribute bits to specify more
information about how that object can be used efficiently. Attributes can include a
wide range of information, from the expected lifetime of a particular object to the
kinds objects that will interact with a particular object.

4.5 Opcodes

Every opcode in the ++VM is a series of 16-bit short words, each containing a mixture
of required and optional instruction information. The first byte of the first opcode
word specifies an operation family, such as math addition or object creation. The
remaining byte, and zero or more additional instruction words, will contain more
specific information about what kind of instruction to execute. The virtual machine
defines 64 opcodes in several broad categories, including math operations, memory
operations, control operations, creation operations, thread operations, annotation
operations, and miscellaneous operations.

Languages implemented on the ++VM are unlikely to use all of the opcodes pro-
vided by this language specification; instead, most will use some subset of the opcodes
specified by the virtual machine. Some languages will not allow for the execution of
certain opcodes, while others will ignore certain attributes of other instructions. For
instance, some of the opcodes specified may be potentially unsafe. Certain opera-
tions, such as pointer arithmetic, are difficult or impossible to verify before the code
is executed. An opcode verifier can be used to ensure that some of the opcodes are
safe; however, certain opcode attributes or even certain code constructs cannot be
verified. While the ++VM will support these operations, certain language preferences
may not permit these operations.

CHAPTER 4. THE ++VM 33

For more information about opcodes, see Chapter 8.

4.6 Attributes & Annotations

Some of the bits in ++VM instructions, as well as some ++VM opcodes themselves,
are meta instructions. These attributes and annotations provide a more detailed
picture of the code’s high-level properties and can be used to provide situational in-
formation to the runtime system. Using attributes and annotations may allow the
virtual machine to make more informed decisions about memory management and
code generation, resulting in performance improvements. The ++VM also allows im-
plementations to define their own custom annotations. These annotations can then
be used by ++VM compilers to extend the ++VM system, making it simultane-
ously more flexible and more powerful. For more information about annotations, see
Chapter 10.

Chapter 5

Object and Object Attribute
Support

Over the last ten years, object-oriented programming has become a common way of
writing code. Object-oriented languages work by manipulating hidden structures via
messages, and they take advantage of data abstraction and encapsulation in order to
treat all types of data in a uniform manner [Mit03]. Many virtual machine languages
have adopted the object-oriented paradigm, using objects as the basic operational
data structure in a language. The object layout, in addition to defining a number
of properties of the underlying virtual machine, also has a significant impact on the
underlying performance of the host machine.

There are several differences between objects in the ++VM and objects in other
high-level language virtual machines. First, in contrast to some object-oriented lan-
guages, the ++VM specifies the internal layout of objects in the system. While this
design decision imposes a number of constraints upon the language implementation, it
allows for a uniform treatment of objects across systems and languages. Additionally,
objects in the ++VM can be influenced by attributes in the opcode stream. These
attributes can provide more information to the system about an object’s lifetime and
behavior.

The remainder of this chapter specifies the object layout, considers a number of
object attributes, and ends with a discussion of the benefits of these features for the
++VM.

34

CHAPTER 5. OBJECT AND OBJECT ATTRIBUTE SUPPORT 35

X X X X X X X X

63 0

0 0 1 0header

(X) (X) (X) (X) (X) (0) (0) (0)

63 0

(1) (X) (X) (X)(code)

X X X X X X X X

63 0

X X X Xinst var 0

X X X X X 0 0 0

63 0

1 X X Xassoc obj

X X X X X X X X

63 0

X X X Xinst var N

Figure 5.1: A ++VM object

5.1 Object Layout

Figure 5.1 depicts the layout of an object in memory.

5.1.1 General Objects

The object layout is extremely important for the ++VM. The first part of the object,
consists of two or three parts: the internal information field, the associated object
pointer, and an optional code pointer. Following these fields are the object instance
variables. The instance variable store the object-specific information and hold the
program data.

CHAPTER 5. OBJECT AND OBJECT ATTRIBUTE SUPPORT 36

Internal Information Field The internal information field is typed as a short,
and contains four 16-bit fields.

The highest order short is used to hold the number of words that are needed to
store the instance variables of this object. This field can be used to calculate the
size of the object, as the header size is a constant. The field size can be read by the
program, but should not be modified. The value of this field is retrieved when the
one-operation instruction “field” is executed.

The next short in the internal information field is used to hold a lock. If the short
value is zero, then the object is not locked. If the value of the short is less than 256,
then the short value holds the number of times that the lock is held. If the value of
the short is greater than 256, then the short value serves as an index into a lock table
and can be used to retrieve a more complicated lock structure.

The two low order shorts are reserved for use by the garbage collector and future
extensions of the virtual machine. Some of these bits will be used to determine
whether an object has been examined by a garbage collector. Other bits may be used
by the thread scheduler or other internal mechanisms.

Associated Object Pointer The second part of the header is a pointer to an
associated object. This will vary depending upon the type of the specific object. An
overview of the six object types can be found in Section 4.2.2.

If the object is a standard object, then the associated object pointer references
the class associated with that object. The class will contain the method vtables as
well as the static variables which can be accessed by that object.

If the object is an object with code, then the associated object pointer also refer-
ences the class associated with that object. The class will contain the generic method
vtables as well as the static variables which can be accessed by that object.

If the object is a class, then the associated object pointer references the direct
superclass of that class. Even though classes themselves are objects, the associated
object of a class object does not point to a meta-object class.

If the object is a list element, then the associated object pointer of the list element
type is a reference to one of two types of objects. If a list element’s associated object
pointer is a reference to a standard object, it can be thought of as a Lisp-like atom.
On the other hand, if the list element points to another list element, the list element
can be thought of as a Lisp-like cons cell. The class for the list element can be
retrieved using the trap vector; for more information on trappnig, see Section 9.3.2.

CHAPTER 5. OBJECT AND OBJECT ATTRIBUTE SUPPORT 37

Code Pointer The third header component is a code pointer. The code pointer is
a reference to code perhaps just-in-time compiled for this particular object. The only
types of objects which have code pointers are objects with code and class objects; all
other types of objects must follow their associated object pointers in order to find
an object with a code pointer. If an object does not have a code pointer, then that
object’s header can be shortened.

Instance Variables Following the object header are the object’s instance variables.
Instance variables of the class are stored in memory addresses above the code pointer
(or, if the code pointer is not present, after the associated object pointer). The
number of instance variables is determined by the object’s length.

5.1.2 Specific Objects

Some objects in the ++VM are more complicated than the standard object. Though
these objects have the same memory layout as other objects, their properties and
behavior are more complex. These objects include classes, arrays, and lists.

Class Objects Classes in the ++VM are objects, and the virtual machine can treat
them in the same way as it treats other objects. In memory, classes are distinguished
by the class reference type. The header of a class object has been described as above:
the associated object pointer of the class will point to the class’s superclass, and all
classes will have code pointers. The remaining fields in the class object will contain
the class’s static variables.

Arrays The ++VM dose not distinguish between arrays and objects at the type
level. Arrays are treated identically to any other object, except that arrays are objects
with lengths determined at runtime. In contrast to a standard object, whose size is
determined statically via its superclass, the size of an array is determined from the
length parameter to the array constructor. When an array is allocated, the length of
the array is stored in the length field of the object header.

At runtime, the only possible difference between an array and an object is that
the array indices may need to be bounds checked. The need for bounds checking is
controlled by the object’s tag bits: if the bounds check bit is set, then the length of
the object is compared with the requested index. Not all arrays need to be bounds
checked, as an object attribute can be used to disable explicit bounds checking.

CHAPTER 5. OBJECT AND OBJECT ATTRIBUTE SUPPORT 38

Lists The ++VM also provides native support for Lisp-like cons elements through
the list element reference type. List elements consist of the header information fol-
lowed by two object references.

If the object is a list element, then the associated object pointer references another
object. All list elements must be of the same class type. Using the associated object
pointer in this way allows the ++VM to minimize the amount of space overhead
necessary to store list elements by storing the list element class only nce in the per-
thread trap vector.

5.2 Object Behavior

Allocation All objects in the ++VM are dynamically allocated. Every ++VM
object must be allocated on a 64-bit boundary. Objects can be allocated in the
stack or the heap; the location of allocation is controlled by an object attribute.
Stack allocated objects do not have to be garbage collected, as they are allocated
directly into a method’s stack frame. Additionally, objects can be allocated in specific
cache lines. The memory allocator can take a similar object as a parameter and to
allocate the new object in a different cache line than the passed parameter. Using
this allocation scheme, it will be possible to put commonly-used objects in different
cache lines to minimize the number of cache misses. For more information, on object
allocation, see Chapter 10.

Even before allocation, objects can be influenced by other, more general object
attributes. The frequency of object access, as well as the length of the object lifetime,
can be specified as attributes. Another attribute can specify whether this object will
ever be null and can be used to possibly eliminate null checks on a particular object.

Referencing An object reference points to the associated object field of the object.
In order to access values in the information field, the virtual machine will have to
subtract the appropriate number of shorts to access the data.

When the virtual machine searches for code associated with an object, the tag
bits are used to check whether that object actually has a code pointers. If the tag
bits indicate that a code pointer is present, the virtual machine then executes the
object-specific code. If the tag bits indicate that no code pointer is present, then the
virtual machine must look for code via the associated object pointer.

The first object instance variable is located one or two long words beyond the
location of the object reference. Object instance fields can be of any type, either data
type or reference type, though the types of these fields are specified by the object’s

CHAPTER 5. OBJECT AND OBJECT ATTRIBUTE SUPPORT 39

class. Since memory is tagged by the long word, data of the same type can be packed
into the same long word: eight bytes can be stored together in the same long word
as opposed to having to store eight bytes in eight different long words.

Tagging All objects in the system have the most significant tag bit set, marking
them as one of the six reference types as described in Section 4.2.2. The remaining
bits control different properties of the object, such as whether or not it has code.
The tag bits are not the same thing as the object’s class type; the class type must be
determined by following the object’s associated object pointer. The tagging bits, in
conjunction with the length field, control hde extent of the object should be examined
by a garbage collector.

Auto-boxing In the ++VM, primitive data types are stored as primitives. Primi-
tive data types are not stored in special classes when they must be treated as reference
types in arrays. In order to do this, it is necessary to perform an extra check prior
to method invocation. Before a non-static method is executed, the type of the this
pointer, %tc, is examined. If the tag bits of the this pointer indicate that the register
value is a data value, then the method is trapped by the virtual machine before it
begins to execute. A class lookup can then be performed using the tag bits as a class
index. In this way, the tag bits serve as an indirect form of a class pointer. This sys-
tem allows primitive data types to be the targets of methods in the virtual machine
while avoiding the slowdown of an additional levels of indirection; in many method
invocations, the JIT compiler should be able to omit the tag checks when primitive
data types cannot possibly be the target objects. For more detailed information about
trapping, see Section 9.3.2.

Garbage Collection All heap objects in the ++VM are garbage collected. The
behavior of the garbage collector is unspecified, although generational garbage col-
lection may be facilitated by the life-length object attribute. Since objects must be
allocated on 64-byte boundaries, the three least significant bits in each object ref-
erence are available for the garbage collector to use. All references, including the
associated object pointer and code pointers in the object headers, must reserve these
bits.

CHAPTER 5. OBJECT AND OBJECT ATTRIBUTE SUPPORT 40

5.3 Object Attributes

When created, objects can have a number of attributes. An additional instruction,
the attribute instruction, is able to change these attributes at later stages of program
execution in order to provide more accurate information to the virtual machine.

Access Frequency The access frequency attribute uses two bits to determine how
frequently an object is being accessed. If an object is frequently accessed, this at-
tribute should be set appropriately so that the just-in-time compiler keeps this object
in the cache as much as possible. Alternatively, if the object is accessed infrequently,
the object should not be cached.

Life Length The life length attribute uses two bits to determine whether the ob-
ject will last for three lengths of time, or whether no generational information can be
determined. Some of the objects created by the ++VM may be only temporary wrap-
pers for data, while objects will be nearly permanent fixtures of the virtual machine.
If the virtual machine can capture this information, it may be able to allocate new
objects in an appropriate garbage collector generation, improving garbage collection
speed.

Pinning Since the ++VM allows pointers to objects, the garbage collector must not
move objects which are referenced by pointers. This attribute prevents the garbage
collector from garbage collecting or moving an object, ensuring that pointers to this
object will always remain valid. The ++VM may choose to place pinned objects in
a separate memory section to facilitate garbage collection for other objects; however,
this is not required and pinned objects can be intermixed with unpinned ones.

Garbage Collection The garbage collection attribute uses two bits to fine-tune
the garbage collector for this particular object. This attribute can be used to enable
or disable garbage collection on a particular object, though the virtual machine makes
no guarantee that the object will not be moved around even when garbage collection
is disabled. One setting of these bits will run the garbage collector immediately on
the object, allowing this attribute to function as a freeing mechanism.

Optional Null Checks This attribute will instruct the just-in-time compiler to
create or remove null checks in the native code that it creates. Though disabling null
checks may make virtual machine instructions potentially unsafe, it has the potential

CHAPTER 5. OBJECT AND OBJECT ATTRIBUTE SUPPORT 41

to greatly increase the execution speed of the program. This attribute can be of use
in multiple types of languages. First, not all object-oriented languages require null
checking, and this attribute can be used to achieve that behavior. Additionally, even
in object-oriented languages that require null checking, this attribute may have uses.
The programmer might be able to determine that an object will contain data, even
if the compiler is not able to do so, and allowing a hinting mechanism may lead to
faster performance on trusted libraries.

Stack Allocation Although ++VM objects are typically allocated on the heap,
this attribute allows the virtual machine to allocate an object on the stack. Stack-
allocated objects are potentially more efficient, as they do not have to be moved
around by the garbage collector. Instead, stack-allocated objects are automatically
garbage collected when a method terminates: they are destroyed along with their
associated stack frame. Stack-allocated objects, however, are potentially unsafe, as a
stack-allocated object may be destroyed while it is still referenced by a heap allocated
one. If a compiler is able to determine that invalid references will not occur, or if the
implemented language allows unsafe behavior, this attribute can be used to achieve
faster performance. Additionally, since stacks are objects, this allocation process
allows for objects to be allocated within other objects. Objects allocated on the stack
should be pinned on allocation so they are not moved into the heap.

Cache Lines The ++VM allocator attempts to allocate objects in different cache
lines to maximize cache effectiveness. When an object is created in the ++VM,
another object can be passed to the allocator as an object attribute. The allocator
will put the new object in a different cache line than the other object; if the two
objects are then used together, the two may not conflict in the cache. Previous
papers on this type of cache-conscious allocators have performance improvements of
up to 42% over standard allocators [CHL00].

5.4 Features of Objects

The ++VM object specification calls for a number of features that are not often
found in other virtual machines. These attributes are designed to add flexibility and
expressive power to the system. By giving more information to the virtual machine,
the compiler and the coder may be able to take advantage of this in a variety of ways.

CHAPTER 5. OBJECT AND OBJECT ATTRIBUTE SUPPORT 42

General Objects In the ++VM, every component of the system is an object. This
means that all objects can be treated in the same fashion, whether they are a user
objects or system components. Though class objects must be handled specially, as
their associated object pointer points to a superclass as opposed to the class Class,
they share the same general layout as everything else. This consistent framework
is a more elegant way to design a virtual machine, and is not found in many other
systems. Additionally, this will create a simpler sequence of hardware instructions
because component properties will not have to deal with different cases for different
types of instructions.

Objects as Primitives Objects are an essential part of the ++VM virtual ma-
chine. The ++VM includes support for six primitive reference types, as described
in Section 4.2.2. In contrast, most hardware architectures do not directly support
objects, as objects are not primitive types in many machines. By providing direct
support for objects, the ++VM attempts to be a middle layer between virtual ma-
chines implemented purely in software and real machines implemented completely
in hardware. The objects are still platform-independent, as required by the virtual
machine.

Standardized Layout Every object in an object-oriented language is associated
with a class. In many current virtual machines, the location of this pointer is only
loosely specified. In the ++VM, however, the class pointer, code pointer, and lock
must immediately precede the object data for two important reasons. First, the
++VM allows general pointer types, which must be able to figure out where object
fields are located. If the object layout is different between different implementations
of the ++VM, platform-independent pointer manipulation may not be correct. In
order for this virtual machine to support platform-independent pointer arithmetic,
objects must have the same layout. Additionally, specifying the location of the class
pointer can provide a number of hints to the JIT. If the JIT knows general properties
of all objects, it can be used to improve overall system performance. By keeping
the class pointer, code pointer, and lock in the same place, it may be possible to
standardize certain JIT optimizations across multiple implementations of the virtual
machine.

Code Pointers Using code pointers can allow for faster performance for specific
objects as well as logical code partitioning. Code pointers can improve performance
by allowing per-object code optimizations. If an object has many near-constant fields,

CHAPTER 5. OBJECT AND OBJECT ATTRIBUTE SUPPORT 43

the virtual machine may be able optimize them just-in-time. In most systems, the
optimized code is appended or inserted into the generic code, meaning that runtime
checks may be necessary to determine whether the optimized or the unoptimized code
should be used. Additionally, using code pointers would have the additional benefit
of logically grouping similar snippets of code in memory. In many JIT implemen-
tations, all optimizations are performed to a basic block in memory, with guards in
place to prevent code from going down the wrong pathway; though the optimizations
themselves are separated into blocks, these blocks can be linked into pathways if they
are logically related.

Object Attributes Objects in the ++VM have a variety of attributes, as described
in Section 5.3. These attributes help make the virtual machine much more flexible
than standard virtual machines. Many of these attributes also improve virtual ma-
chine performance, such as attributes that suggest caching strategies or attributes
that provide information about an object’s lifetime. While some of these attributes
may be disabled by a particular language, attributes provide language designers with
additional means of providing information about an object’s behavior.

Object-Oriented Registers The ++VM provides object-oriented registers, some-
thing that today’s hardware does not provide. Many high-level languages use objects,
pointers to complex data structures; current hardware largely deals with uninterpret-
table pointers. By defining object-oriented registers, the ++VM virtual machine will
be able to provide assistance to both the hardware and the software running on the
virtual machine. Even if the object-oriented registers in the ++VM may not provide
a performance boost on current hardware, these registers will become more efficient
as hardware begins to provide better support for objects.

Auto-boxing The ++VM supports auto-boxing, allowing numeric primitives to
be used without an extra level of indirection. This makes it possible to use numeric
primitives in places where other languages would require wrapper classes. This saves
space, as it is no longer necessary to use additional memory to hold the wrappers;
equally importantly, it saves the programmer from having to explicitly remember to
wrap the object. While it may add additional levels of complexity and may require
some runtime checks, the compiler may be able to determine where these checks can
be eliminated and mitigate any performance penalty.

CHAPTER 5. OBJECT AND OBJECT ATTRIBUTE SUPPORT 44

Viewable Object Size In the ++VM, it is possible for the program to access the
field that contains the object size. This approach is not common in many dynamically-
allocated memory systems: past virtual machines have hidden the actual object size.
There are three major advantages to allowing the object size public information.
First, the virtual machine is able to have an accurate understanding of the meaning
of every bit in memory; it is not necessary for implementations to hide memory bits
from the virtual machine. Additionally, since the pointer data type makes it possible
for the program to access any location in memory, exposing the object size makes it
possible to allow virtual machines to map virtual machine memory directly onto main
memory (though it makes it possible for careless or malicious programmers to change
an object size). Lastly, it avoids the necessity of storing the length value twice for an
array, as arrays must hold on to their length values for bounds checking.

Chapter 6

Intermediate Value Support

In virtual machines as well as real machines, a significant percentage of the compu-
tation process consists of moving intermediate values from one memory location to
another. The ++VM attempts to minimize the frequency and the complexity of this
value swapping, and does this in two ways. First, it uses a register-based system to
indicate the relative importance of each of these intermediate values and to reduce
the number of instructions necessary for swapping them around. Additionally, it
uses a flexible memory system in order to support a variety of object-oriented and
pointer-based memory operations.

This chapter first focuses on short-lived intermediate values, those held in registers
on a per-method basis. It introduces the register system as implemented in the
++VM, explains the kinds of virtual registers needed in the machine, and discusses
the advantages of this approach. Afterwards, this chapter turns to a discussion of
more persistent values, such as object fields and main memory.

6.1 Registers

The ++VM machine is a register-based machine, and most ++VM opcodes are op-
timized for execution on registers. Registers in the ++VM can be divided into two
groups, frame registers and thread registers. Frame registers are used to hold tempo-
rary values from the user code. Thread registers are used to store information about
the state of the virtual machine. Both frame registers and thread registers have the
same format.

45

CHAPTER 6. INTERMEDIATE VALUE SUPPORT 46

X X X X X X X X

63 0

X X X Xregister

Figure 6.1: A ++VM register

Register Format As can be seen in figure 6.1, all registers hold 64 bits worth of
information. Registers are tagged with an additional four bits of type information
just like all other memory elements in the ++VM. Data registers are tagged with the
appropriate data type, reference registers are tagged with the appropriate reference
type, and machine registers are statically typed. For more information on memory
tags, see Chapter 7.

6.1.1 Frame Registers

The ++VM requires a number of registers to keep track of a method’s internal state.
Frame registers, the registers that hold this information, are allocated on a per-frame
basis. These type of registers are called frame registers because each frame will have
its own set of thread registers and these registers are freed when the method ends.

The ++VM has sixteen frame registers, eight data registers, numbered %d0 to
%d7, and eight reference registers, numbered %r0 to %r7. An example of a register
frame can be seen in figure 6.2.

Data Registers Data registers are designed to hold data that is will be manipulated
directly by the virtual machine, such as ints or doubles. All of the data registers in
the ++VM are identical to each other, and must be able to store data in any of the
data forms described in Section 4.2.1. Registers are typed, and the types are held
in the condition code register described below in Section 6.1.3. Only even-numbered
registers can hold 128-bit ultras; the corresponding odd-numbered register is used to
store the lower 64 bits. When an ultra value is stored in two registers, then it is illegal
to access any one constituent register as a different data type. Certain operations that
take three operands, such as inner product, must select one of their operands from
the low-order registers. In order to treat information in a data register as a pointer,
it is necessary to explicitly cast it into a reference register. Objects in data registers
cannot be directly dereferenced. For this reason, data registers are ignored during
garbage collectors, as they cannot contain interpretable pointers or object references.

CHAPTER 6. INTERMEDIATE VALUE SUPPORT 47

X X X X X X X X

63 0

0 X X X%d0

X X X X X X X X

63 0

0 X X X%d7

X X X X X X X X

63 0

X X X X%r0

X X X X X X X X

63 0

X X X X%r7

Figure 6.2: ++VM frame registers

Certain languages may still find this property a safety concern and will choose to
disable this virtual machine feature.

Reference Registers Reference registers in the ++VM are designed to hold data
that will be indirectly manipulated by the virtual machine, such as objects or arrays.
All of the reference registers are identical to each other, and must be able to store
references in any of the reference form of Section 4.2.2. None of the reference registers
of the frame are used to store stack pointers, frame pointers, or other machine-specific
information; this information is stored in the thread registers. Reference registers
form part of the root set for garbage collection purposes. It is not possible to perform
pointer arithmetic on a reference register. In order to manipulate a pointer, it is
necessary to convert it to a data type using a data register, perform the desired

CHAPTER 6. INTERMEDIATE VALUE SUPPORT 48

manipulation in that data register, then recast it to a pointer. Certain languages
implemented by the ++VM may not permit these operations.

6.1.2 Thread Registers

The ++VM also requires a number of registers to keep track of the virtual machine’s
internal state. Thread registers, the registers which hold this bookkeeping informa-
tion, are allocated on a per-thread basis. These type of registers are called thread
registers because each thread has its own set of registers that must be saved when
the thread is suspended. A diagram of a thread register is show in figure 6.3.

X X X X X X X N

63 0

0 0 0 0ccr

X X X X X X X X

63 0

1 0 1 1class

X X X X X X X X

63 0

0 0 1 1pc

X X X X X X X X

63 0

1 0 0 0code

X X X X X X X X

63 0

1 X X Xthis

...

63 0

...others

Figure 6.3: ++VM thread registers

Generally, the thread registers contain critical information about the state of the
virtual machine. The contents of these registers cannot be read or changed by a

CHAPTER 6. INTERMEDIATE VALUE SUPPORT 49

program, but code operations will set or change their values indirectly.

Condition Code Register This register holds information about the result of the
last instruction. The condition code register is tagged as a collection of bytes. For
more information about the condition code register, see Section 6.1.3.

This Object Register The this object register, %to, holds the object that is
currently being manipulated. For static methods, it is set to zero. The this object
register is tagged with the tag of the object to reference in memory; usually, the this
object register will have a reference tag but it can be a data tag when auto-boxing is
in use. For information about how methods manipulate the this object register, see
Chapter 9.

This Class Register The this class register, %tc, holds the class of the object in
the this pointer. For static methods, it is set to the class on which the method is
being called. The this class register is tagged as a reference to a class. For auto-boxed
values, the value of the %tc register is derived from the trap vector. For information
about how methods manipulate the this class register, see Chapter 9.

Code Register The code register, %cr, holds a pointer to the current code object.
The code object is an array of shorts that contain instructions for the program to
execute. The code register is tagged as a reference to an object.

Program Counter The program counter register, %pc, holds the current program
counter. The program counter is an index into the code object. The program counter
register is tagged as a long.

Trap Register The trap register, %tr, holds the thread’s trap vector. The trap
vector register is tagged as an object reference. For more information about trapping
and auto-boxing, see Chapter 5.

Exception Register The exception register, %xr holds the active exception han-
dler if a stack cutting scheme is in use. The exception handler register is tagged as an
object reference. For more information about exception handling, see Section 12.5.

Stack Pointer The stack pointer register, %sp, holds the stack pointer, an index
into a method’s stack. The stack pointer is tagged as a long.

CHAPTER 6. INTERMEDIATE VALUE SUPPORT 50

Frame Register The frame register, %fr, holds a pointer to the current frame. The
method stack, if needed, is held at an offset within the frame. The frame pointer is
tagged as an object with code reference.

Machine Register The machine register, %mr, holds a reference to the virtual
machine, and can be used to determine the next thread to schedule. The machine
register is tagged as an object with code reference.

6.1.3 The Condition Code Register

0 0 0 0 0 0 0 R 0 0 0 0 0 0 0 R

63 48

ccr

0 0 0 0 0 0 0 E 0 0 0 0 0 0 0 F

47 32

ccr

0 0 0 0

3 0

tag

0 0 0 0 0 0 0 U 0 0 0 0 0 0 0 V

31 16

ccr

0 0 0 0 0 0 0 Z 0 0 0 0 0 0 0 N

15 0

ccr

Figure 6.4: The condition code register

The condition code register extremely important to the functioning of the ++VM.
This register, detailed in figure 6.4, holds eight bytes. One bit of each byte is used
to encode condition and branching information. Of the eight available bytes, only six
are in use.

CHAPTER 6. INTERMEDIATE VALUE SUPPORT 51

Negative Bit The negative bit, N, is set if the result from the instruction was a
negative number. Otherwise, it is clear.

Zero Bit The zero bit, Z, is set if the result from the last instruction was zero.
Otherwise, it is clear.

Overflow Bit The overflow bit, V, is set if the result from the last instruction was
too large for its data type. Otherwise, it is clear.

Underflow Bit The floating-point underflow bit, U, is set if the result from the
last instruction was too small for a data type. Otherwise, it is clear.

Future Bit The future bit, F, is set if the result from the last instruction was a
future and that future still awaits computation. Otherwise, it is clear.

Exception Bit The exception bit, E, is set if stack cutting is used to handle excep-
tions. It is cleared if stack unwinding is in use. For more information on exception
handling, see Section 12.5.

Reserved Bits The remaining bits are reserved.

6.2 Register Windows

In the ++VM, a register window is used to hold the current frame registers. Register
windows minimize the amount of memory that must be moved internally and provide
a convenient manner of passing parameters to methods. A pictorial description of a
register window can be seen in figure 6.5

6.2.1 Description

A register window can be thought of as a contiguous subset of all available registers.
Of all of the data registers and reference registers available to the virtual machine, a
method is only able to access those registers which are within the window. The register
name %d0 become relative offsets within the collection of all available registers: when
a new method is called, the window shifts and %d0 points to a free registers; when the
method returns the window shifts back and the old registers return to their original

CHAPTER 6. INTERMEDIATE VALUE SUPPORT 52

X X X X X X X X

63 0

0 X X Xunused called ...

X X X X X X X X

63 0

0 X X Xunused called %d2

X X X X X X X X

63 0

0 X X Xcaller %d6 called %d0

X X X X X X X X

63 0

0 X X Xcaller %d5 unused

X X X X X X X X

63 0

0 X X Xcaller ... unused

X X X X X X X X

63 0

0 X X Xcaller %d7 called %d1

Calling

Returning

Figure 6.5: A ++VM register window

values. If a free register is not available when a method is called, a register is freed by
writing its contents off to memory. Additionally, register windows also allow ++VM
methods to share registers. If a method only uses only three data registers, there
is no need to save the unused registers; instead, these registers can be given to the
called method. As can be seen in figure 6.5, the caller method’s data registers %d6
and %d7 are not used and are made into the called method’s data registers %d0 and
%d1 respectively.

6.2.2 Rotation

When a register window is rotated, it conserves to registers and rotates out six. The
lower six registers, registers %d0 to %d5 in figure 6.5 are shifted out, the upper two
registers are renamed to be registers %d0 and %d1 in the new frame, and six new

CHAPTER 6. INTERMEDIATE VALUE SUPPORT 53

registers be come registers %d2 to %d7. Reference register windows function in the
same way as data register windows. Since information such as the stack pointer and
frame pointer are stored in the machine registers, the registers %r6 and %r7 do not
have special significance in the ++VM. For this reason, rotating out %r6 and %r7
will not cause the virtual machine to reach an inconsistent state.

Rotation Independence Data registers and reference registers rotate indepen-
dently. Rotating the active data registers does not require rotating the active refer-
ence ones, and rotating the active reference registers does not require rotating the
active data ones. When possible for a method call to rotate only the data register
window, only the reference register window, both, or neither.

Use Register windows are used when calling and returning from methods. When a
new method is invoked, its parameters can be stored in registers %d6, %d7, %r6, and
%r7 in the caller window. When the method is invoked, these registers are renamed
to be the lower-numbered registers of the new method and other registers are made
to be the higher-numbered registers. Similarly, when a value is returned, it must be
placed in register %d0, %d1, %r0, or %r1 of the current register frame, and, when
the window is shifted back the appropriate amount, are renamed to be the higher-
number registers in the caller frame. For a more detailed description about how
register windows are used when calling methods, see Section 9.3.1.

6.3 Features of Registers

The register nature of the ++VM has many benefits.

Hardware Similarity Today, many hardware architectures are register-based, not
stack-based, and can take advantage register-based computation. A virtual machine
that is register based will run more efficiently on this form of hardware, just-in-time
compilers will not be needed to convert from a stack-based architecture to a register
based one. The implementing virtual machine will not have to spend the same amount
of effort on register assignment when the just-in-time compiler is run as it would if it
had to assign registers from scratch.

Register Assignment Hints When a stack-based virtual machine is run on register-
based hardware, register assignment must be done from scratch. Most virtual ma-

CHAPTER 6. INTERMEDIATE VALUE SUPPORT 54

chines assign registers at runtime, using a just-in-time compiler using runtime infor-
mation when deciding what values to put in which registers. The execution of this
algorithm slows down code execution, which is needlessly inefficient. Static compilers
are capable of assigning values to registers, and they may be able to do a better job
than the runtime system because they can work with the semantics of the original
code.

Field Assignment Hints A more expressive specification would allow for objects
in which certain fields are assigned to registers. If an object is manipulated frequently,
it may place some of its values in registers at compile time. For this reason, it may be
useful to annotate particular fields in an object, leaving the assignment annotations
directly in those particular fields or making them part of a method which accesses
that field. While a just-in-time compiler may be able to improve upon this statically-
assigned allocation scheme with information gathered at runtime, a statically assigned
register scheme may be a more effective place to start than a completely blank slate.

Backup Stacks If a method uses more data or reference variables than it has data
or reference registers, the ++VM has a stack to store intermediate values. While
a stack is available, it is not intended to be the primary repository for intermediate
values. Most operations are optimized to use values in registers, as register operations
will be faster than stack operations on most machines and may require fewer opcode
words in the instruction set. The logical stack grows and shrinks in alignment with
the register window, and provides a backup storage area for the window.

Register Windows Register windows allow registers from one method to be passed
directly to another method, requiring only a change of name and not a copying
of data. Register windows should improve performance, since hosts will not have
to waste cycles in moving data. On hosts that support register windows, this can
be implemented natively. On hosts that do not support register windows, those
registers that are saved in the virtual register window do not have to move data
around whenever a new method is called as long as the host machine can efficiently
reorganize register values. The advantage of using a system of register windows is that
it minimizes the amount of data that must be passed around internally. By simply
renaming registers, it is possible to pass parameters to method with a minimal amount
of data movement. A physical machine must save the contents of the oldest register
to a backup stack when a new register in a system of register window is needed. The
++VM virtual machine, on the other hand, lets the hardware implement the actual

CHAPTER 6. INTERMEDIATE VALUE SUPPORT 55

frame depending upon its number of registers.

6.4 Memory

X X X X X X X X

63 0

X X X Xcode heap

X X X X X X X X

63 0

X X X Xobjects heap

X X X X X X X X

63 0

X X X Xslack free

X X X X X X X X

63 0

X X X Xframes stack

Figure 6.6: The ++VM memory layout

All references in the ++VM are 64 bits. This allows ++VM programs to access
multiple exabytes worth of memory, a quantity much greater than past virtual ma-
chines have allowed and which will provide ample support for programs in the near
future. Though there are certain restrictions on how memory should be used - for
instance, all objects must be aligned on long word boundaries - language designers
have few restrictions as to how they organize the memory space.

Code The code needed to execute methods in the ++VM are stored in code object
arrays. Code objects, like all other objects in the ++VM, have an object header, an

CHAPTER 6. INTERMEDIATE VALUE SUPPORT 56

X X X X X X X X

63 0

0 0 0 0header

X X X X X X X X

start + 15

0 0 1 0opcode

X X X X X X X X

+ 16 + 31

0 0 1 0opcode

X X X X X X X X

63 0

1 X X Xclass CODE

X X X X X X X X

+ ... end

0 0 1 0opcode

Figure 6.7: A ++VM code object

associated object pointer, and are movable. Because code is stored using the object
format. The format of a code object is shown in figure 6.7. For more information
about how the code object is used during code execution, see Chapter 9.

Heap The heap is the memory location where most new objects are allocated,
stored, used, and destroyed. Strictly speaking, the code region is a subset of the
heap. For more information about how objects use the heap, see Chapter 5.

Stack The stack contains information about a thread’s behavior. It consists of a
sequence of call frames, each containing information about a single method. For
information about how methods use the stack, see Chapter 9.

CHAPTER 6. INTERMEDIATE VALUE SUPPORT 57

Pinning In the ++VM, objects can be pinned in order to allow pointers to safely
traverse the object, or to facilitate interaction with external methods. Objects can be
pinned in place, can be pinned to a location at the virtual machine’s digression, or can
be pinned at a pre-specified location. While many virtual machine implementations
may find it more efficient to pin particular objects, such as code objects, the ++VM
machine specification does not require that they be pinned.

6.5 Intermediate Value Movement

Registers cannot hold all intermediate values needed by the virtual machine. For this
reason, the ++VM virtual machine provides a number of ways to transfer informa-
tion between registers and memory. There are three important transfer mechanisms:
transfers between registers, object-oriented memory transfers, and pointer-addressed
memory transfers.

6.5.1 Inter-Register Transfers

The ++VM has a single opcode for moving data and references between registers.
This opcode is more compact than the opcode needed to move information from
registers to main memory and back. Using this opcode, it is possible to transfer data
between registers as long as the tag of the value remains the same. To change a value
from a reference to a data type, it is necessary to use the convert instruction. To
change a value from a data type to a reference type, it is necessary to perform a cast
operation.

6.5.2 Object-Oriented Transfers

The object-oriented design of the ++VM facilitates information access via an object
offset. When accessing a field via an object offset, the location of a data value is
computed using an offset from the object’s header.

Using object referencing in the ++VM requires three parameters: the object,
the offset index, and the register which is being loaded or stored. The object being
dereferenced must be in one of the reference registers in the current frame or one
of the supporting thread registers. Certain operations may require an additional
extension word to specify the particular object being dereferenced. Additionally, the
virtual machine must know the offset index within the specified object. If this offset
is stored in a data register, then no extension word will be needed. If the index is

CHAPTER 6. INTERMEDIATE VALUE SUPPORT 58

small, however, an extension word can be used to hold the object offset. Lastly, the
source or destination register must be specified; this is the register from which data
will be retrieved or to which data will be stored. The virtual machine will know
whether or not to use a data register or a reference register based upon the tag bits
of the location in main memory.

6.5.3 Pointer Addressing

Unlike other virtual machines, the ++VM allows pointers and pointer arithmetic.
This makes it possible for the opcode stream to contain pointers directly to main
memory as opposed to indirectly via an object-oriented access mechanism. Certain
languages may not use pointers for type safety reasons, but the feature is provided to
allow more flexibility and expressiveness to compilers that target the virtual machine.
Using pointer addressing requires two parameters: the pointer and the register that
is being loaded or stored.

The pointer addressing instructions take their operands from one of four places.
Most often, it will a pointer directly from a value already loaded in a reference register
and compute its memory value directly. In this case the opcode can be contained in
a single opcode word. It is also possible to use pointers as indices, however. Pointer
lookup can also be performed using constant a constant offset from the instruction
stream or the constant pool; these offsets are stored in one 32-bit extension opcode.
To perform more complex forms of pointer arithmetic, it is necessary to move the
pointer to a data register, manipulate it, and recast it as a pointer in a reference
register.

When using pointer addressing, it is not necessary to specify whether the memory
location should be moved to a data or an address register. The virtual machine will
use the memory tag bits to determine whether to use a data register or reference
register. If the target field is a data field, it will be moved into the appropriate data
register. If the target field is an reference field, it will be moved to the appropriate
reference register.

Since dynamically allocated objects can be moved around by the garbage collector,
a method must ensure that an object has been pinned before using pointer arithmetic.
It can do this in one of two ways. First, it can require that the object be pinned on
creation by setting a flag in the creation instruction. This will ensure that the garbage
collector does not move the object during its operation, but may be too restrictive as
an object may not always be subjected to pointer arithmetic during its entire lifetime.
Alternatively, a method can request that an already-created object be pinned in place.
This will allow a method to use an object as if it were pinned on creation, but allow

CHAPTER 6. INTERMEDIATE VALUE SUPPORT 59

the object to be unpinned and moved about at a later time.

6.5.4 Memory-to-Memory Transfers

In the ++VM, it is not possible to move information directly from one memory loca-
tion to another without using a register. It is first necessary to load the information
to a register using a load instruction, then store the information using an additional
instruction. The just-in-time compiler may be able to optimize this sequence of op-
erations when the virtual machine is running.

6.6 Features of Memory

Tagged Memory All memory locations in main memory are tagged; this simplifies
some memory movement instructions. For more information, see Chapter 7.

Polymorphic Instructions The ++VM has very few instructions that deal with
main memory, and implementation of the memory movement instructions should
be straightforward. The memory movement instructions are polymorphic, meaning
that the type of the data being moved is not specified; the virtual machine is able
to infer the data type using the tag bits of the value’s operands. During just-in-
time compilation, the virtual machine can use the tag bits to decide whether data
being moved is a byte or a long and generate the appropriate sequence of hardware
instructions.

Pointer Operations In contrast to many virtual machines today, the ++VM al-
lows pointer operations. Like C# and other recent virtual machines, the ++VM
allows pointer arithmetic and arbitrary pointer casts. While some languages may
choose to disallow pointer operations, especially languages that wish to guarantee
type safety, the ++VM machine provides the functionality to those virtual machines
that wish to have this flexibility. As a corollary, the ++VM also provides support
for absolute addressing, allowing a program to access any arbitrary location in the
memory space. Such operations, of course, should be considered with caution.

Chapter 7

Tagged Memory

Tagging memory is a useful way of differentiating between data and references in
memory. To a virtual machine, an untyped collection of data bits may be indistin-
guishable from a pointer; in order to ensure that pointers and data are not confused, it
is necessary to include additional bits to type memory. Typed memory, for instance,
significantly helps the work of a garbage collector, as a garbage collector most follow
object pointers but ignore data words that look like pointers.

There are several differences between the tagged memory system in the ++VM
and those found in other high-level language virtual machines. First, the tags in
the ++VM are much more expressive than those found in other languages. Though
this imposes a larger memory overhead, it creates a much more powerful and flexible
tagging system. Additionally, both data and reference types are tagged, a property
which allows the virtual machine to be more aware of what it is storing in memory.
This facilitates the operation of polymorphic operators and other virtual machine
features.

The remainder of this chapter specifies the implementation of tagged memory in
the ++VM, describes how memory tags are used, and concludes with a discussion of
the benefits of tagged memory.

7.1 Tag Implementations

In the +++VM, every 64-bit long word is augmented by a four-bit tag. This tag
determines the type of the long word. All locations in main memory, as well as all
registers and all stack values, must be tagged. Tag values for memory that has not
been allocated, or for memory values that have been freed by the garbage collector,

60

CHAPTER 7. TAGGED MEMORY 61

are undefined and may be implementation-dependent. An example of the logical tag
implementation is shown in figure 7.1.

 V A L U E

63 0

T A Gvalue

Figure 7.1: A ++VM tag

Data Tags If the most significant tag bit is a zero, then the long word contains
data values. Certain settings of the tag bits will indicate that the 64 memory bits
are either eight bytes, four ints, two words, one long, or half of an ultra, two floats,
or one double; one tag is reserved for future data extensions. For more information
about the specific implementation of data tags, see Appendix A.

Reference tags If the most significant tag bit is a one, then the long word contains
an object reference or a pointer. Certain settings of the tag bits will indicate that
the 64 memory bits are a reference to an object, a reference to an object with code,
a reference to a class, a reference to a list element, or a generic pointer; one tag
is reserved for future reference extensions. For more information about the specific
implementation of reference tags, see Appendix A.

7.2 Tag Usage

Tags are an essential part of ++VM objects and are very influential in memory
allocation, memory use, and memory reclamation.

7.2.1 Setting Tags

The manner in which a tag is set depends upon whether the tag specifies a value in
main memory or an intermediate value. When a heap object is allocated through the
use of the creation instruction, the fields in the objects are tagged according to the
static typing of the class. Tags for intermediate values, in registers or on the stack,
are much more flexible. These tags are set whenever an appropriate value is moved
into that location and can be modified by multiple instructions.

CHAPTER 7. TAGGED MEMORY 62

7.2.2 Using Tags

Loading Tags are used to determine the source or the destination of a movement
instruction when moving data from main memory to an intermediate value. The
virtual machine chooses between using a data or a reference register for its load
and store instructions based upon the type of the main memory location. If the
main memory location were tagged as a data type, a data register is chosen and the
register is tagged with the same value as was the memory location. Likewise, if the
main memory location were tagged as a reference type, a reference register is used
and the register is tagged appropriately.

Storing Tags can also be used to determine the source of a store instruction, if
the store instruction uses an object offset. Because all locations are typed according
to the object layout, the virtual machine will be able to determine the tag value of
the store destination and choose the appropriate register type to store there. If the
memory location is tagged for data, the virtual machine will store the appropriate
value of a data register at that location. Likewise, if the memory location is tagged
for references, the virtual machine will store a reference value there.

Casting Register tags can be changed by using a variety of conversions and casts.
A convert operation changes an argument in a data register to another data type. A
cast operation changes a value in a data or reference register into a reference. In both
cases, the new tag of the object is specified in the instruction. If the changed value is
stored in main memory, it is necessary to ensure that the value is placed in a location
with an appropriate tag; it is not possible to directly cast values in main memory.

Selecting Tag bits are used to select the arguments for a polymorphic opcode. As
the ++VM does not store the operand types in the opcode stream, it must infer
them from the tags of the arguments. For instance, the polymorphic ADD opcode
determines whether to bytes, shorts, words, longs, ultras, floats, or doubles based
upon the tags of its operands. Furthermore, tag bits are used to differentiate between
objects with different properties. As objects may have differing associated object
pointers and may not have code pointers, the memory tags can be used to determine
how an opcode should behave. For instance, the method-invoking opcode CLL will
behave differently if an object has a code pointer; if the tag bits show that an object
has a code pointer, then the optimized code will be called rather than a class’s generic
code. More information about individual opcodes, and how they use the tag bits, can
be found in Chapter 8.

CHAPTER 7. TAGGED MEMORY 63

Trapping Tag bits are incredibly helpful in auto-boxing and class trapping; in the
++VM, it is possible to invoke methods on primitive data types. When this method
is invoked, the virtual machine must check the field’s tag to ensure that the method
is being invoked on an object value. If the method is not invoked on an object, then
the virtual machine traps to an appropriate location, calling the appropriate method
on the primitive object. Memory tagging thus automatically boxes primitive data
types, associating them with a particular class without requiring a wrapping object.
For more information about auto-boxing and class trapping, see Section 9.3.2.

7.2.3 Releasing Tags

The process for releasing a tag depends upon whether the tag is associated with a
value in main memory or with an intermediate value. For values in main memory,
the tag is immutable until the object with which it is associated is released or moved;
the tag reclamation process is automatically performed by the garbage collector.
Intermediate values, on the other hand, can change from instruction to instruction
and do not have to be explicitly set.

7.3 Tag Features

Tagged memory is very powerful. For a 6% overhead, the ++VM is able to pro-
vide polymorphic operators, short instructions, data type distinctions, reference type
distinctions, packing, verification, and garbage collection support. As much of this
overhead is already present in many systems with small, dynamically collected ob-
jects, the costs of providing tagged memory should be minimal.

Polymorphic Operators In the ++VM system, opcodes do not operate on a
specific data type. Instead, an opcode defines a kind of abstract operation, and the
memory locations will determine the actual code that is executed. This polymorphism
allows the opcodes to be as general as possible since the virtual machine will be able to
infer type information from the tag bits. Additionally, using tagged memory values
creates a more compact instruction set and frees additional bits to for instruction
attributes.

Short Instructions By using a tagged memory system, the ++VM frees a number
of bits in the instruction word. Because the instructions in the virtual machine do
not have to specify the data types being manipulated, instruction bits are freed in

CHAPTER 7. TAGGED MEMORY 64

order to hold attributes. As these attributes can improve code execution speed, the
memory tagging can lead to overall performance increases.

Data Distinctions Tagged memory allows the virtual machine to distinguish be-
tween different types of data. Memory tagging helps the virtual machine distinguish
between the data elements even in the absence of static type information. Most other
virtual machines do not distinguish between different data types at the memory level,
instead relying on the instruction set to distinguish between data types. The ++VM,
on the other hand, explicitly specifies the primitive data type for every data element
in the system, a fact that may enhance runtime security and debugging where it is
important.

Reference Distinctions Additionally, tagged memory helps the virtual machine
determine the size of an object. Reference types can be of different sizes, varying
from pointers to full-blown objects with locks. Using tagged memory, the virtual
machine can determine various properties of a reference type and adjust its behavior
accordingly. For instance, the tag bits can help a method invocation opcode select an
optimized method for an object, if one is available, rather than the general method
available through the object’s class. By keeping track of the size and components of
an object, the memory tags allow for objects that can take better advantage of the
opportunities available in the system.

Packing Because the ++VM tags every 64 bit region, it is not necessary to tag
every byte, every short, or every int. This allows the virtual machine to pack multiple
bytes, shorts, or ints into a region which use a common tag. While it is the compiler’s
job to perform this packing optimally, the virtual machine benefits because it can
combine tag bits for multiple data values.

Enhanced Verification Current languages ensure type safety by using verifier in
order to ensure that objects and data are treated appropriately. Verifiers use static
language properties in order to ensure that operations are performed on values of
the appropriate type, making sure that all operations in the virtual machine do not
violate the properties of the language. Using tagged memory augments the power of a
static verifier, allowing it to determine certain virtual machine properties at runtime.
Certain programs may contain legitimate runtime behavior but can rejected by the
verifier because they violate the static constraints of a language. By using a tagged
memory system to augment the static verifier, the virtual machine may be able to

CHAPTER 7. TAGGED MEMORY 65

increase the power of the verifier. It should be noted that some systems, including the
Java virtual machine, must implement typing to perform static access verification.

Garbage Collection In a garbage collector, the virtual machine must determine
whether a value is a reference. By using a tag bit to determine whether a memory
location stores a reference type or a data type, the garbage collector can determine
whether a sequence of bits must be searched for further references. In the absence of
tagged memory, garbage collectors must be extremely cautious: often, conservative
garbage collectors will mistake data for objects and will fail to free certain memory
locations. By using tagged memory, garbage collectors can avoid this problem and
collect all relevant garbage.

Eventual Hardware Support Tagged memory is becoming increasingly impor-
tant for current systems, not just the ++VM. Most garbage-collected software sys-
tems, not just the ++VM, require some form of memory tagging in order to differ-
entiate between objects and pointers. Most hardware, however, does not currently
support tagged memory. By explicitly specifying the need for typed memory in the
virtual machine specification, it is hoped that hardware designers will begin to realize
that tag bits are important to advanced memory systems.

Chapter 8

Opcodes

Loosely defined, an opcode is a basic unit of work in a virtual machine. Complicated
programs in a language are compiled down to a sequence of opcodes to be executed, as
the opcodes serve as the machine language of a virtual machine. In current systems,
the opcodes are generally machine-independent, meaning that they are not meant to
be directly executed in hardware. While some opcodes can be directly mapped to
hardware operations on some machines - an example is the addition instruction, which
can be found in almost all real and virtual machines - more complicated opcodes, such
as those for calling methods or switching threads, are generally handled by software
as opposed to hardware.

Opcodes for the ++VM are meant to be more general and more versatile than op-
codes for other high-level language virtual machines. First, opcodes in the ++VM are
generally more expressive than those for other languages, providing optional informa-
tion about the context of the operation being performed. Though this imposes a small
size overhead, it allows for potential increases in code execution speed. Additionally,
the ++VM provides a number of operations that are not found in other virtual ma-
chines. These operations, such as set operations and synchronization points, give the
compiler access to a number of powerful tools.

The remainder of this chapter specifies the format of opcodes in the virtual ma-
chine, then describes the process by which opcodes are executed. It then provides an
overview of the types of opcodes that the virtual machine can execute, and concludes
with a discussion of the features of the ++VM instruction set. Full details of the
instructions can be found in Appendix B

66

CHAPTER 8. OPCODES 67

8.1 Opcode Format

As shown in figure 8.1, each opcode is a sixteen bit word. This word can be divided
into two sections: an eight-bit instruction byte and an eight-bit attribute byte. Some
opcodes may require additional words which hold additional attributes or additional
opcode information.

0 0 0 0 0 0 0 0 A T T R I B

15 0

word 0

E X T E N S I O N W O R D

15 0

word 1

Figure 8.1: A ++VM opcode

The first eight bits of the opcode, the zero bits in figure 8.1, specify the instruction
byte that the virtual machine will execute. If the instruction byte is less than 64
(if the bytecode begins with two zeros), then the byte specifies one of the sixty-four
“intrinsic” instructions of the ++VM, the instructions that are defined by this virtual
machine specification. These instructions are central to the functioning of the virtual
machine and are defined later in this chapter. If the instruction byte is 64 or greater,
the opcode is an “extrinsic” instruction and is a reference to a code group. These
code groups are defined at the method, frame, or thread level and will change between
classes. More information about extrinsic instructions and code groups is available
in Section 11.1.

Regardless of whether the opcode is intrinsic or extrinsic, the next eight bits of
the opcode are the attribute byte, as can be seen in figure 8.1. This region of the
opcode that holds more specific information about the instruction. Depending upon
the specific opcode, bits in the attribute byte may specify source and destination
registers for an operation, may hold short constants, or may hold instruction-specific
attribute information. Many of these bits are required, such as the bits a with white
background in figure 8.1, but other bits are optional information attributes and are
depicted against a gray background, a depiction that is uniform throughout this

CHAPTER 8. OPCODES 68

thesis. The information encoded in these attribute bits is highly dependent upon the
type of opcode. More information about these attributes is available in Chapter 10.

Some opcodes may have one or more additional extension words, such as word 1
in figure 8.1. Like the attribute field in the original opcode instruction, these bits
help give more information to the virtual machine. The information in these bits
also varies depending upon the type of the instruction. For instance, these bits can
contain indices into the constant pool, pointers to relevant registers, or other optional
attribute information.

Opcodes specified in the ++VM should be stored and transmitted in network byte
order for platform independence. Internally, however, implementers are free to treat
++VM instructions in an appropriate manner.

8.2 Opcode Execution

Opcode execution or just-in-time compilation is a six step process: fetch, classify,
extend, type, execute, and write back.

Fetch When fetching, the virtual machine must decode the instruction. This is
done by fetching the first word in the opcode stream and examining the instruction
byte. The instruction byte specifies the type of operation that should be performed
by the virtual machine.

Classify In the typing stage, the virtual machine must determine the opcode family
in order to execute the proper instruction. This is done by parsing the instruction
byte of the opcode. If the opcode value begins with two zeros, then the opcode is one
of the 64 basic opcodes of the ++VM and should be parsed appropriately. Otherwise,
the opcode is reference to a code block. If the operand is one of the basic opcodes,
the virtual machine executes the appropriate code; otherwise, the virtual machine
determines the location of the code block and prepares to execute the bytecodes
stored in that location.

Extend Once the opcode is understood, it is necessary to retrieve any additional
instruction words that contain instruction attributes. From the information available
in the first instruction word, the virtual machine can determine whether it is necessary
to fetch additional words from the instruction stream. As some opcodes consume
multiple words, the virtual machine must retrieve all attribute information about the
opcode before beginning to execute it.

CHAPTER 8. OPCODES 69

Type Before the instruction can be executed, it is necessary to examine the tags of
the instruction input values. For some instructions, such as the add instruction, this is
necessary to determine the specific instance of the polymorphic instruction that must
be generated; the tag specifies the size of the data values. For other instructions,
such as the call method operation, this is necessary to determine whether the address
value is a future that still needs to be computed.

Execute Once the virtual machine understands what type of instruction to execute
and has checked the appropriate tags, the instruction can be executed. Any infor-
mation contained in the instruction’s informational attribute bits must be used when
executing the instruction; information contained in the informational attributes can
be ignored if the ++VM implementation does not support them.

Writeback Lastly, the virtual machine must update the condition code register
with the results of the instruction execution. Some implementations may determine
that the next instruction will not look at the condition code register; these machines
can skip this step. Once the virtual machine has updated the condition code register,
interpretation of the instruction is complete, and the machine can begin the process
over again with the next instruction.

8.3 Bytecode Instructions

The ++VM specifies no more than sixty-four opcodes, the intrinsic opcodes of the
virtual machine. These can be divided into several broad general categories described
below.

8.3.1 Math Operations

The ++VM supports six arithmetic opcodes: addition, subtraction, multiplication,
division, modulus, and inner product. These operations work on all data types stored
in data registers or on the stack. The additional information fields of these instructions
will specify the location of the data operands.

Shift Operations The ++VM has three bit shift opcodes: logical shift left, logical
shift right, and arithmetic shift right. These operations work on all data types stored
in data registers or on the stack. The additional information fields of these instructions
will specify the location of the data operands.

CHAPTER 8. OPCODES 70

Set Operations The ++VM has five set operation opcodes: set union, set in-
tersection, set exclusive or, set inner product, and bit toggling operations. These
operations work on all data types stored in data registers or on the stack. The ad-
ditional information fields of these instructions will specify the location of the data
operands.

8.3.2 Memory Operations

The ++VM has three kinds of memory management operations. These operations
move data between different sections of memory, preserving memory tags as the data
is moved.

Register Operations The ++VM has a single opcode that is optimized for moving
values around between registers, and moving between the registers and the stack.

Casting Operations The ++VM has two type-changing opcodes: conversions,
which are used to type data, and casts, which are used to type objects. The convert
operation to change a variable to the specified data type. The cast operation will
change a variable to a specific class type.

Object Movement Operations The ++VM has two opcodes for accessing fields
from an object offset, one opcode for loading and one for storing. The object refer-
enced can be stored in a thread register or in a user register. The source or destination
of this movement must be a data or address register.

General Movement Operations The ++VM has two opcodes for accessing fields
from a general memory offset, one opcode for loading and one for storing. The offset
amount must be stored in a data register. The source or destination of this movement
must be a data or address register.

8.4 Control Operations

The virtual machine has three ways to control execution flow: branching (with op-
tional assistance from comparison operations), method calling, and exception han-
dling.

CHAPTER 8. OPCODES 71

Comparison Operations The ++VM has three opcodes that explicitly set bits
in the condition code register. Though all ++VM instructions set the condition
code register bits to the result of an opcode’s execution, these operations set them
explicitly. These opcodes compare values in reference registers, compare values in
data registers, and a check bounds on a number.

Logical Control Operations The ++VM has two logical control opcodes, opera-
tions that set the program counter to a new value based on the values in the condition
code register. One opcode branches on the values of the negative or the equality bits.
However, a supplemental branching opcode jumps based on arithmetic overflow or
underflow, on the value of the exception bit, or on the value of the future bit. For
more information on logical control, see Section 12.1.

Calling Operations The ++VM uses only one instruction for calling methods and
only one for returning from them. The call opcode can be used to invoke methods
statically, dynamically, or via a wound call. The return opcode is polymorphic. For
more information on methods, see Chapter 9.

Exception Operations The ++VM uses two opcodes to handle exceptions. One
instruction is needed to create an exception handler which manages exceptions when
they occur. Another instruction is needed to throw an exception, to create an ex-
ception object that can be handled later. For more information on exceptions and
exception handling, see Section 12.5.

8.4.1 Creation Operations

The virtual machine uses only three instructions for creation. These are the create
object, create class, and create method operations.

Creating Objects The ++VM has one opcode for creating objects. This opcode is
used to create both arrays and objects; the two are differentiated only by instruction
attributes. For more information on objects, see Chapter 5.

Creating Classes The ++VM uses one opcode for creating a class out of an array
of words. This allows for dynamic class definition, should languages choose to allow
this opcode.

CHAPTER 8. OPCODES 72

Creating Methods The ++VM has one opcode for creating a method out of
an array of words. This allows for dynamic method creation and closures, should
language choose to allow this opcode.

8.4.2 Thread Operations

The ++VM provides four opcodes that will be useful to multithreaded programs.
These are the monitor enter and monitor exit instructions, the yield instruction, and
the synchronization point instruction.

Monitors The ++VM provides two opcodes for thread locking operations. These
are the opcodes for entering and exiting a monitor, and a per-object lock that are
contained in the object header.

Thread Switching The ++VM provides two opcodes for yielding thread control
explicitly. The yield opcode will suspend a thread, possibly signaling another thread
in the process. The synchronization point opcode sets up a common checkpoint across
multiple threads.

8.4.3 Annotations

The majority of the remaining opcodes are built-in annotations. They provide more
attribute information about the running code, helping the virtual machine make more
informed decisions about how and where to optimize.

Loops The ++VM has one opcode for explicitly specifying the boundaries of a
loop. This opcode also provides hints about the loop runtime behavior. For more
information on loops, see Section 12.3.

Code Groups The ++VM uses two opcodes to bind a collection of opcodes or a
library call to a single block opcode: one opcode to start the group and specify a
number of attributes and another opcode to end that group. In conjunction, the two
opcodes will associate an arbitrarily large group of opcodes to another opcode; this
new opcode can be scoped at the method, class, or thread level. This new opcode can
then be used in the instruction stream to reduce code size and increase performance.
For more information on code groups, see Chapter 11.

CHAPTER 8. OPCODES 73

Object Attributes The ++VM has an instruction for providing additional in-
formation attributes for an object. Using this opcode, the compiler can provide
additional hints about an object’s behavior over its life cycle.

Annotations The ++VM uses one opcode to specify the onset of an annotation.
An annotation is an interface that allows programmers and virtual machine designers
to define their own additions to the virtual machine. Unrecognized annotations may
be ignored. For more information about annotations, see Section 10.3.

8.4.4 Miscellaneous Instructions

Five instructions do not fall into other general categories.

Stack Operations The ++VM has one operation that performs stack modifica-
tions, such as pushes, pops, value duplications, and value reversals.

One Operand Instructions The ++VM has an opcode that performs a variety
of operations which only need a single operand. These include one’s complement
negation, two’s complement negation, population count (number of set bits), leftmost
bit index, rightmost bit index, trap vector assignment, and object size count.

Illegal Instruction The ++VM has an illegal instruction, an instruction that will
kill the virtual machine if executed. It exists so that the virtual machine can avoid
executing data.

8.5 Features of Opcodes

The ++VM opcode set has many useful properties, including a small instruction
set, polymorphic operations, informational attributes, extensible instructions, future
support, set operations, architecture independence, and language independence.

Small Instruction Set The base instruction set for the ++VM is very small,
especially in comparison to the instruction sets of most virtual machines today. All
of the built-in opcodes to the ++VM can be represented using only six bits, meaning
that the virtual machine is designed to execute only 64 distinct opcode families.
However, the current ++VM specification only defines 44 distinct opcodes. This

CHAPTER 8. OPCODES 74

number is barely a quarter of the number of opcodes defined in Java and five percent
of those needed for large languages languages such as C#. These small instruction
sets have a number of desirable properties. First, in addition to general elegance, a
small instruction set is RISC-like in that every instruction in the ++VM is considered
an essential feature of the virtual machine. Additionally, a small instruction set makes
sense from a conceptual standpoint: while computers care whether two addends are
shorts or long longs, from a human standpoint there is little inherent difference.
From a more practical standpoint, a small pre-defined instruction set leaves a host
of instructions available for block and library operations, which allow the virtual
machine to be customized by the user.

Polymorphic operations Most instructions in the ++VM are polymorphic, mean-
ing that they can operate on values of varied tags. Thus, while many languages use a
large number of opcodes to differentiate between different flavors of a specific instruc-
tion, the ++VM uses its tagged memory system to select the appropriate instruction
in an opcode family. This use of polymorphic operations is helpful for both data and
reference values. Data values can use the memory tag to determine which type of
operation to perform; for instance, the polymorphic add operation uses the tags of
the operands to generate the appropriate hardware instructions for the addition of
bytes in contrast to addition of ints. Reference values, can use the tag in a variety of
ways, for instance to differentiate between futures and computed objects or between
generic objects and list elements. Because of these polymorphic operations, the vir-
tual machine does not have to have a collection of special opcodes to deal with these
features. Additionally, polymorphic operations may be useful in cases where a static
compiler may not know the static type of an object, which can be true with futures.
Though some polymorphic instructions may require more runtime or compile time
in order to ensure code correctness, the benefits far outweigh this slight performance
penalty.

Informational Attributes One of the most important features of the ++VM
are the informational attributes found on many instructions. These are optional
attributes that convey more information about the context of the instruction. The
virtual machine implementation can ignore these attributes without causing the code
to perform incorrectly; however, by taking advantage of the informational attributes
these implementations can improve performance. As of this writing, no other high-
level language virtual machine includes this information directly in the opcode stream.
For more information about attributes, see Chapter 10.

CHAPTER 8. OPCODES 75

Extensible Instructions The ++VM instruction set is designed to be extensible
in three major ways. First, since only 44 of the 64 opcodes are currently defined, there
is plenty of room to expand the opcode set. Additionally, many instructions have an
extension bit, which makes it easier to add additional information attributes to an
opcode without requiring a rewrite of the instruction set. Most importantly, though,
the ++VM allows for code groups. The virtual machine can bind a user-defined or
library-defined block of code to opcodes, allowing for extensibility at runtime. This
feature is not found in other virtual machine languages. For more information about
blocks and libraries, see Section 11.1.

Future Support The ++VM defines a system of opcode-level support for futures
or promises. Futures are fields whose value have not yet been computed, and can
be extremely useful for parallel and lazy evaluation. Though only a few high-level
languages use futures, futures are powerful features that can make potentially make
computation more efficient. The ++VM provides a number of opcodes to create, test
for, and run futures, providing full support for languages that choose to use futures,
something that is not often found in a high-level language instruction set.

Set Operations The ++VM provides opcode-level support for set operations. The
majority of current high-level language virtual machines do not provide support for
these operations, instead relying upon a series of shifts and logical instructions in
order to toggle a single bit in a number. In the ++VM, sets are supported with
such features as a population count (which returns the number of ones in a number),
features that are easily implemented in current hardware but are not always directly
supported by high-level languages.

Architecture Independence The ++VM instruction set is not designed to be
implemented on a particular architecture. Though the virtual register nature of the
virtual machine favors register-based real machines, the ++VM is flexible enough
to be implemented on any architecture. All instructions are generic and hardware-
independent.

Language Independence The ++VM instruction set is not designed to imple-
ment a particular language; instead, it is designed to support as many high-level
languages as possible. Languages implemented on the ++VM will use some subset
of the opcodes specified by the virtual machine: some languages will not allow for
the execution of certain opcodes entirely, while others will ignore certain attributes of

CHAPTER 8. OPCODES 76

other instructions. For instance, type-safe languages like Java may not take advantage
of the pointer instructions for security reasons.

Chapter 9

Methods

9.1 Methods in the ++VM

A method is the basic grouping of code in many high-level languages. Many high-level
languages prefer to use a large number of rather small methods, making the method-
calling overhead an important factor in the performance of high-level language virtual
machines.

Methods in the ++VM are designed to be more expressive than those in other
languages. First, it provides a simple but powerful interface for calling methods.
Though it uses only two opcodes to support methods, the ++VM introduces a num-
ber of ways to call and return from methods which have not been used in existing
virtual machines. Furthermore, the virtual machine provides a powerful set of method
attributes. These attributes can improve method performance and increase the overall
efficiency of the virtual machine.

The remainder of this chapter describes the process of calling a method and
the process of returning from a method. It then provides an overview of the at-
tributes which can optimize method execution and a more detailed description of a
new method-calling procedure, the wound call. The chapter concludes with a discus-
sion of the features of methods in the ++VM.

9.2 Kinds of Methods

The ++VM provides opcode-level support for four manners of calling methods: vir-
tual methods, static methods, wound methods, and trapped methods.

77

CHAPTER 9. METHODS 78

Virtual The code for a virtual method is determined by the runtime type of an
object. When the virtual method is invoked, the virtual machine determines the code
to be executed by examining the objects - if it has JITed code - or the class’s virtual
method vtable. While a virtual method is running, the this pointer is set to the
object on which the virtual method will be invoked; the this class pointer will be set
to that object’s class.

Static The code for a static method is determined by the compile-time type of an
object and do not depend upon class instances at runtime. At compile time, the
virtual machine can determine the appropriate code to execute because the code is
not dependent upon runtime information; this means that static methods will be
more efficient than virtual methods as they will not need to look up their code in a
vtable. While a static method is running, the this pointer will be set to null, since
static methods cannot be called on object instances; the this class pointer will be set
to the class that contains the static method.

Wound The code for a wound-call is determined by the static type of an object;
unlike a static method, however, wound calls are performed on an object. For instance,
object initialization in Java is an example of a wound call. A wound call is head
recursive: when a wound call is invoked, the virtual machine first attempts to call the
wound call on all ancestor classes of the current object before calling it on this one.
Wound calls attempt to reuse the method frame to improve performance. For more
information about wound calls, see Section 9.7.

Trapping This code for a trapped method is determined via a trap vector for an
object. Whenever any method is invoked, the virtual machine uses the type bits to
verify that the value is an object as well as whether the object has a class pointer
or whether it has code. If the value is not an object, the virtual machine will trap
it and dispatch a method based upon a class trap vector; this process allows the
virtual machine to invoke methods on primitive types and on list elements. When a
trapped call method is invoked, it serves as a hint to the virtual machine that the
invocation will trap and that the host machine should branch-predict accordingly.
While a trapped method is executing, the this pointer is set to null, since the caller
value is not a standard object; the call pointer is set to the appropriate class from
the trap vector.

CHAPTER 9. METHODS 79

Others While languages that run on the ++VM may use other method-calling
procedures, the ++VM does not provide bytecode support for them. Other types of
method calls, such as those for interface methods, can be created from a combination
of ++VM instructions and the above method calls. It is expected that one of the
++VM libraries will provide an optimized routine for these kinds of method calls.
Those programmers and languages that wish to support more complicated method
invocations should use the calls provided in that library.

9.3 Method Behavior

9.3.1 Calling Methods

Calling a method is a multi-step process, consisting of parameter placement, call
parsing, code location, method execution, and method return. The general process is
the same under both interpretation and just-in-time compilation execution schemes.

Parameter Placement Though technically not part of the execution of a method,
it may be necessary to place parameters in a location for the method to access.
Because register windows are used along with methods, it is possible to pass method
parameters by leaving up to two data parameters and up to two reference parameters
them directly in the frame of the caller method. When the method is called, the data
register window and the reference register window are shifted by default, passing
up to four parameters directly to the called method. Additional data and reference
parameters will have to be passed via the stack. For more information about register
windows, see Section 6.2.

Call Parsing Once the parameters have been properly placed, the virtual machine
executes a call instruction. This instruction specifies the behavior of the method call
and specifies any information attributes that the method might need. The virtual
machine records this information and prepares a new call frame, but does not yet
attempt to load the code for the method.

Code Location Once the call frame has been prepared, the virtual machine then
loads the method code by checking the tag of the value on which the method is being
called. If the tag shows that the value is not an object, the virtual machine should
trap to the appropriate value in the trap vector. If the value is an object with code,
the virtual machine should use the object-specific code for improved performance.

CHAPTER 9. METHODS 80

Otherwise, the virtual machine should locate the code in the object’s class and execute
the appropriate code.

Method Execution Once the virtual machine has created a frame and determined
the code location, it should execute the method. Method execution involves executing
the opcodes for the new method until a return statement is reached.

Method Return When the new method executes a return statement, the method
frame is released, the this object and the this class pointers are restored, and the
register window is shifted to restore the registers of the caller method. Any additional
parameters should be popped from the stack.

9.3.2 Trap Vector Operation

The trap vector is used when methods are invoked on non-object values.

Setting Trap Vector Values In order to execute methods on data objects and on
list elements, it is necessary to set the class that corresponds to the list element in
the trap vector. This is done using a specific one-operand instruction, which equates
the list element reference type with a specified type of class. In order to set the trap
vector value, a pointer to the desired class is placed in a virtual machine reference
register; the instruction then inserts that value into the appropriate location on the
trap vector. From that point on, all methods called on the list element data type will
correspond to calls to methods of that class, as these calls will go through the trap
vector. The trap vector reference is held in a machine register, %tr.

Trapping The virtual machine checks to see whether a value is an object when it
checks the tag bits to find a code pointer. If the value is not an object, then the
method call will trap to the virtual machine’s trap vector. Using the trap vector, the
virtual machine will determine the value’s class as well as find the proper method to
call on that value.

9.4 Method Attributes

The method calling opcode uses a number of attributes that support optimization.
These attributes provide a number of hints to the just-in-time compiler and allow the

CHAPTER 9. METHODS 81

JIT to make informed decisions about what to optimize. For more information about
attributes in general, see Chapter 10.

Inline The inline attribute determines whether or not a method should be inlined.
Inlining a method is an optimization in which a method’s code is spliced into the
method of the caller class and saves the virtual machine the effort of allocating a new
call frame for the method. This attribute uses two bits to determine whether the
virtual machine should sometimes, always, or never try and inline the method.

Conserve The conserve register determines whether the parameter registers will
be conserved after the method call. If the registers are conserved, then they will be
addressable by the caller method and may contain additional return values. If the
registers are not conserved, then the virtual machine cannot access those registers
until a new value is explicitly stored there.

Tail Call The tail call attribute determines whether or not a method should be
tail-called. A method that is tail-called will use the same call frame as the caller
method because the caller method has finished execution. Providing support for tail
calling allows the ++VM to support some forms of recursion more efficiently.

Code Pointer The code pointer attribute is set if the object on with the method
will be called is likely to have a code pointer. By setting this attribute, the virtual
machine will predict that the check for an object’s code pointer will succeed and that
object-specific code can be used. Also, setting this bit may be a way to encourage
the virtual machine to attach code pointers to objects on which this method will be
called.

Common The common attribute is set if this method will commonly be called on
objects of the same class as the current object. By setting this attribute, the virtual
machine is encouraged to optimize a virtual method for this type of class, either
by branch prediction or by inlining. Both of these changes will help speed up code
execution.

9.5 Returning From Methods

The return opcode specifies that a method has completed execution and that the
caller method should resume execution.

CHAPTER 9. METHODS 82

9.6 Return Behavior

The return opcode returns from a method and destroys the current method’s frame.
This same return statement is used for all types of returns, including methods that
return void, methods that return a single value, and methods that return multiple
values. The opcode does this by specifying the number of registers to preserve when
returning to the caller frame.

Execution To return a void, the return opcode should conserve zero registers. To
return a single register, the return opcode should conserve only one register and
the register type bit should be set appropriately. To return more than one register,
the return opcode should conserve the appropriate number of registers; however,
conserved registers must either be all data registers or all reference registers.

9.6.1 Return Attributes

The return opcode has one attribute.

Frequency The frequency attribute specifies how often a particular return will be
called. There are three levels of frequency, and these can be used in order to optimize
the manner in which methods will terminate in order to help the just-in-time compiler
predict likely code execution paths through a method.

9.7 Wound Calls

Description The wound call, outlined in figure 9.1, is designed to provide a way of
calling related methods while reusing the same frame. For instance, when objects are
initialized in object-oriented languages, an entire call stack is created for the object
initialization method, the superclass initialization, and all the other classes up the
ancestor list. A wound call is designed to invoke initialization methods - as well as
other methods which have the same names, return values, and parameter types -
without having to store the entire call stack in memory.

Motivation The primary motivation for the wound call is the object constructor.
The ++VM provides the wound call in order to facilitate object creation, a very
common operation in object-oriented languages. However, programmers and com-
piler writers may be able to find a number of novel ways to use this feature. First,

CHAPTER 9. METHODS 83

X X X X X X X X

63 0

0 0 0 0header

X X X X X 0 0 0

start end

1 0 0 0code pointer

...

+ ... + ...

...static vars

X X X X X 0 0 0

63 0

1 0 1 1super class

X X X X X 0 0 0

start + 63

1 0 0 0code block 128

... 0 0 0

+ ... + ...

1 0 0 0other blocks

Class Object

X X X X X X X X

63 0

0 0 0 0header

X X X X X 0 0 0

start end

1 0 0 0code pointer

...

+ ... + ...

...static vars

X X X X X 0 0 0

63 0

1 0 1 1super class

X X X X X 0 0 0

start + 63

1 0 0 0code block 128

... 0 0 0

+ ... + ...

1 0 0 0other blocks

Superclass

X X X X X X X X

63 0

0 0 0 0header

X X X X X 0 0 0

start end

1 0 0 0code pointer

...

+ ... + ...

...static vars

X X X X X 0 0 0

63 0

1 0 1 1super class

X X X X X 0 0 0

start + 63

1 0 0 0code block 128

... 0 0 0

+ ... + ...

1 0 0 0other blocks

Class

X X X X X X X X

63 0

0 0 0 0header

X X X X X 0 0 0

start + 63

1 0 0 0first method

X X X X X 0 0 0

+ ... end

1 0 0 0last method

X X X X X 0 0 0

63 0

1 0 0 0class VTABLE

X X X X X 0 0 0

start + 63

1 0 0 0code block 64

... 0 0 0

+ ... + ...

1 0 0 0other blocks

VTable for Object

X X X X X X X X

63 0

0 0 0 0header

X X X X X 0 0 0

start + 63

1 0 0 0first method

X X X X X 0 0 0

+ ... end

1 0 0 0last method

X X X X X 0 0 0

63 0

1 0 0 0class VTABLE

X X X X X 0 0 0

start + 63

1 0 0 0code block 64

... 0 0 0

+ ... + ...

1 0 0 0other blocks

VTable for Superclass

X X X X X X X X

63 0

0 0 0 0header

X X X X X 0 0 0

start + 63

1 0 0 0first method

X X X X X 0 0 0

+ ... end

1 0 0 0last method

X X X X X 0 0 0

63 0

1 0 0 0class VTABLE

X X X X X 0 0 0

start + 63

1 0 0 0code block 64

... 0 0 0

+ ... + ...

1 0 0 0other blocks

VTable for Class

X X X X X X X X

63 0

0 0 0 0header

X X X X X 0 0 0

start end

1 0 0 0context

X X X X X 0 0 0

+ ... end

1 0 0 0associated thread

X X X X X 0 0 0

63 0

1 X X Xclass FRAME

X X X X X 0 0 0

+ ... + ...

X X X Xlocals

... 0 0 0

+ ... + ...

X X X Xstack

Current Frame

Figure 9.1: Use of a Wound Call

the wound call is not tied to any particular method. This means that the wound call
syntax provides a way of “head calling” other essential methods, such as destructors,
should programmers wish to do so. Additionally, wound calls will only walk the an-
cestor list as long as a given class has an appropriate name, signature, and parameter
list. This means that wound calls can be used to call methods in user-defined classes
only.

Use Figure 9.1 shows the progression of a wound call invocation. The dotted arrows
show the progression before any opcodes are executed. First, the virtual machine
determines whether the super class contains an appropriate method; in this case, it
does. Next, the virtual machine determines whether the superclass’s superclass, the
Object class, has an appropriate method; in this case, it does as well. Since Object
does not have a superclass, the winding is complete. From this point, the virtual
machine continues code execution along the solid lines, executing first the code for

CHAPTER 9. METHODS 84

Object; when the method in the Object class encounters a return statement, the
frame is not recycled upon execution completion. Instead, the frame is re-used to
invoke the appropriate method in the superclass, and, when that has completed, for
the method of the original class. When the class’s method finishes execution, the
wound call has completed, the frame is released, and execution continues with the
next opcode.

9.8 Features of Methods

JIT Hints Attributes such as the inline attribute or the common attribute can
be used to provide hints about code execution. These hints can be used directly by
the just-in-time compiler to increase program execution speed. These attributes can
further increase execution speed by potentially cutting down on the amount of code
monitoring necessary when the program is executing.

Per-Object Optimization The code pointer attribute provides a way to indicate
that a method should be optimized for a specific instance of the class. Per-object
optimized code can be much faster than generic object code, especially because the
virtual machine can make assumptions about per-object runtime constants.

Optimized Calls The ++VM provides an optional per-object code pointer that
can contain optimized methods for a particular instance of a class, as described in
Chapter 5. When the ++VM calls a method on an object, it should check to see
whether that object has an optimized method through its code pointer. If the code
pointer attribute is set, the method invocation opcode can prepare the virtual machine
so that this check will succeed and execution can proceed much more quickly.

Virtual Method Optimization The common attribute allows a method invoca-
tion to indicate that it will often be called on the same type of object. If the JIT
compiler can optimize the code assuming that an object is of one particular type,
then it can potentially speed up code execution in the future. The common attribute
will allow the virtual machine to make assumptions about future method behavior
and lead to improved overall performance.

Recursion Support In contrast to virtual machine languages such as Java, the
++VM provides efficient recursion support. Using the tail-calling attribute, the

CHAPTER 9. METHODS 85

method invocation instruction can call a method within the current frame. This
process of tail-calling methods will save space and time, as the virtual machine will
be able to eliminate additional call frames and will not have to copy data needlessly.

Wound Calls The wound call, as described in Section 9.7, allows a virtual machine
to make use of the same call frame to call multiple related methods. A wound call
first calls a method on an object’s ancestor class, then on all parent classes, then
finally on the class itself; at each level, the wound call has already been performed
on all possible ancestor levels of that class. Currently, high-level languages do not
provide opcode level support for wound calls, even though they perform operations
with similar functionality; for instance, wound calls can be used to initialize or finalize
objects in many languages. By using a wound call, the virtual machine can reuse the
frame, saving stack space and copying time. Additionally, the wound call syntax is
flexible enough to allow programmers to use wound calls for other, more complicated
operations.

Trapping The ++VM uses a trap mechanism to dispatch methods on primitive
data types and on list elements. In contrast to other virtual machines, which require
complicated wrapper structures for structures without code pointers, the ++VM is
able to use the memory tag in order to determine which method to call. Using the tags,
it is possible to eliminate the extra space and indirection needed by these wrapper
classes. Additionally, the trapping mechanism is flexible enough to be manipulated
as the virtual machine is running. This makes it possible to change the type of
list element being manipulated, allowing for maximum flexibility, increased space
efficiency, and only a minimal performance penalty.

Chapter 10

Code Support

In many computer languages, an offline compiler may be able to determine several
characteristics of a program’s runtime behavior. However, due to the restrictive
nature of a machine’s instruction set, this predictive information cannot be given
directly to the runtime system and must be inferred as the code executes. If this
information can be passed to the virtual machine using optional bits in the opcode
stream, though, performance can be improved and just-in-time compilation can be
streamlined. While virtual machines can choose to ignore this information, as the
suggestions are not vital to correct code execution, they may be able to take advantage
of it to increase execution speed.

This chapter focuses on the the ++VM instruction set’s two pathways for passing
information to the virtual machine. The first way is the use of attributes, optional
information bits already associated with opcodes that can provide insight into prob-
able program behavior. The first part of this chapter is devoted to the description
of the attribute system and the advantages that various attributes can provide. The
other pathway is the use of annotations, more complicated structures that provide
increased description of code behavior which take advantage of third-party extensions
to the ++VM instruction set. The remainder of this chapter discusses the annotation
system and the language features possible using annotations.

10.1 Opcodes with Attributes

In the ++VM virtual machine, opcodes use parts of the the second byte of the
instruction word, as well as parts of additional extension words, to store attributes. In
figure 10.1, twenty-four bits are available for attributes: these are all of the opcode bits

86

CHAPTER 10. CODE SUPPORT 87

0 0 0 0 0 0 0 0 A T T R I B

15 0

word 0

E X T E N S I O N W O R D

15 0

word 1

Figure 10.1: A ++VM Opcode

except the eight zeros which specify the opcode type. As usual, required attributes,
the attributes which all implementations of the ++VM must recognize, are displayed
against a white background. Informational attributes, attributes which may provide
additional information about an opcode’s context but are not required for correct
program behavior, are displayed against a gray background.

The virtual machine provides a number of built-in attributes to perform a num-
ber of different functions, including specifying opcode behavior, object lifetime, and
method control flow. For the specifics as to which attributes are associated with
which opcodes, see Appendix B.

Object behavior Attributes can specify additional information about the behavior
of the opcode with which they are associated. For instance, some opcodes have
attributes that specify that a certain object is frequently accessed and that the host
machine should try to keep it in the cache. Other opcodes have attributes that specify
that an object reference is unlikely to be null or that an object is likely to have a
code pointer; these attributes help the virtual machine to predict object behavior and
possibly eliminate unnecessary checks. These attributes can help the system make
better use of the processor and the cache.

Object Lifetime Attributes can also specify information about the lifetime of an
object or memory structure. For instance, opcode attributes can specify the length of
time for which an object is expected to live so that an object can be put in the proper
generation for generational garbage collection. Additionally, other opcode attributes
can specify that an object should be allocated in a memory location such that it will

CHAPTER 10. CODE SUPPORT 88

not conflict with another object. These attributes can help the virtual machine make
better use of main memory and minimize the overhead needed by the allocator and
the garbage collector.

Control Flow Attributes can also provide hints about control flow through a
method. For instance, the opcode that throws an exception can specify a class in
which it expects to find a handler. Alternatively, opcodes that rely on synchroniza-
tion may use attributes to predict whether a block of code will be able to successfully
grab a lock on the first attempt. These and other control flow attributes can be used
to generate code that takes best advantage of the processor instruction stream and
minimize the number of host processor cycles lost to code execution.

10.2 Features of Attributes

Attributes provide a number of useful features to the virtual machine.

Increased specificity Using attributes, ++VM instructions can be specifically
tailored to a particular task. For instance, there is only one object creation opcode
in the virtual machine; however, different attributes can be used to create a pinned
object that will be around for a very long time. In this way, a small number of
very general opcodes can be optimized for use in particular situations. Though the
general opcode family remains the same, the attributes provide a more descriptive
way of depicting how an object will be used by the virtual machine.

Improved performance Attributes can also be used to boost overall performance
in two ways. One way to do this is to provide a series of hints to the just-in-time
compiler in order to allow it to generate more efficient machine code. If the offline
compiler is able to predict certain patterns in runtime behavior, the just-in-time
compiler will not have to work as hard. However, the annotations provide more than
just an offline method of providing information to a just-in-time compiler. Since the
static compiler does not have to worry about the time taken to generate efficient
code, it is able to perform more time-intensive improvements than may be possible
at runtime.

Optional implementation Informational attributes are optional; the ++VM vir-
tual machine will produce exactly the same result whether or not the suggestions

CHAPTER 10. CODE SUPPORT 89

provided by the attributes are followed. Certain ++VM implementations may not
choose to support every attribute, as they may suffer from size constraints or may lack
hardware support for certain features and feel that it is inefficient to implement them
in software. As long as the attribute information is provided, though, the virtual
machines that choose to take advantage of the attributes may do so.

10.3 Annotation Opcodes

Like attributes, annotations are a way of providing additional static information
to the runtime system. Unlike attributes, however, annotations are defined by a
particular implementation of a virtual machine and may not be recognized by or
supported on all ++VM implementations.

10.3.1 Annotation Layout

The annotation is divided into three parts: the annotation opcode, the annotation
name, and the annotation behavior. Since all opcodes in the ++VM begin on word
boundaries, the annotation attribute must begin and end on a word boundary. Thus,
the annotation cannot contain a fractional number of words. Figure 10.2 shows an
annotation as it would appear in the opcode stream.

Opcode The first word of the instruction is the annotation opcode. The first byte
of the annotation opcode is defined by the ++VM specification to specify annotation
opcode. These are the numbered bits in figure 10.2. The second byte holds the length
of the opcode, if the opcode is less than 128 words in length, or an index into the
constant pool otherwise. These are the letter bits in the first word of the annotation
opcode in figure 10.2. The length of the annotation does not include the annotation
opcode or the name index word.

Name The second word of the instruction is an index to the name of the annotation
as held in the class’s constant pool. Implementations of the ++VM should ignore
annotations that they do not understand. If the annotation is unrecognized, then
the virtual machine should skip the proper number of words in order to find the next
instruction to execute. In figure 10.2, the I bits in the second opcode word specify
the opcode name.

CHAPTER 10. CODE SUPPORT 90

0 0 1 0 1 1 0 0 T N N N N N N N

start +15

opcode

I I I I I I I I I I C RES RES RES RES RES

+16 end

exitension

X X X X X X X X X X X X X X X X

start +15

annotation

X X X X X X X X X X X X X X X X

+ ... end

annotation

Figure 10.2: A ++VM annotation

Behavior The remaining words in the instruction are the body of the annotation.
The behavior of the annotation is implementation-dependent, and its behavior must
be defined by an agreement between the compiler writer and virtual machine imple-
menter. In figure 10.2, these are the N bits in the remaining words.

10.3.2 Defining Annotations

Unlike all other opcodes and all other opcode attributes, annotations are specific to
the implementation of the ++VM. An annotation is a contract between the code
generator and the code user, a contract that specifies a particular kind of behavior
that both the compiler writer and the virtual machine implementer wish to support.
There are two steps for creating an annotation, getting the compiler writer and the
virtual machine implementer to agree to an annotation, and getting both parties to
use them.

Before an annotation can be used, both compiler writers and virtual machine
implementations must agree to the form and behavior of an annotation. Since the
general form of particular annotations are not enumerated in the language specifica-

CHAPTER 10. CODE SUPPORT 91

tion, both compilers and implementations must agree to the internal specification of
an attribute. More importantly, both groups must decide what the behavior of the
annotation will be.

In order for an annotation to be used, it must be included in the virtual ma-
chine implementation by the implementer as well as inserted into the code by the
compiler. Since individual implementers will choose whether or to support a particu-
lar annotation, not all annotations will be supported on all platforms. Additionally,
since individual compilers choose whether or not to take advantage of a particular
annotation, some compilers may not choose to create code which uses it.

10.4 Adopted Annotations

While most annotation opcodes are user-defined, some of the basic ++VM opcodes
can be considered as common annotations that have been adopted into the language.
These include the loop opcode and the block creation opcode.

Loops The loop opcode is an example of an annotation opcode. It defines a loop as
a sequence of code blocks executed in a particular fashion, and provides a number of
attributes that can allow for more efficient code execution. The loop instruction is an
annotation because it only modifies the behavior of code execution, not the observable
behavior of the program. For more information about loops, see Section 12.3.

Blocks The block creation opcode is another example of an annotation. It defines
a block as a sequence of opcodes to be inserted at a particular location, and specifies
a number of attributes about that section of code. As an instruction, however, it does
not modify the state of the program; it only provides information about the behavior
of code which is being executed. For more information about blocks, see Section 11.1.

10.5 Features of Annotation Opcodes

There are many reasons to use annotations when generating code. Code annotations
will generally improve performance or help out the virtual machine in a variety of
ways.

Improved Code Quality Many ++VM annotations will be geared towards in-
creasing the quality of the generated code. There are several ways in which anno-

CHAPTER 10. CODE SUPPORT 92

tations can take advantage of this. First, annotations can highlight specific features
of hardware, such as parallel support or special processing units, that might not be
available to standard machines. Additionally, annotations can give hints about run-
time behavior of a program, such as additional information about object allocation
or method invocation. By using annotations that take advantage of these features,
the ++VM may be able to generate more efficient code.

Decreased Code Generation Time Some annotations may decrease code gen-
eration time. These annotations will be able to suggest optimizations to the JIT
compiler which it would otherwise have to determine at runtime. Though these an-
notations only save time when the code is being just-in-time compiled, there may be
opportunities where the time savings is substantial.

Increased flexibility Since the behavior of an annotation need only be defined
for a single implementation, annotations are an appealing way for a programmer to
quickly customize the ++VM to a particular application or architecture. Addition-
ally, annotations provide a simple way for a group of users to quickly expand the
instruction set. If an annotation becomes very popular, future design committees
may be able to incorporate ideas from these attributes into the language.

Optional Use Certain ++VM implementations may choose to ignore some or all
annotations, while others may implement a large number of them. They may choose to
implement certain annotations to take advantage of hardware features such as parallel
processors, or may choose not to implement an annotation for space reasons. Certain
compilers and code generators may use annotations liberally or sparingly. High-end
compilers may emit code that is specialized for specific tasks, while other compilers
may not be sophisticated enough to gather information for a specific attribute. If
both the virtual machine and the compiler choose to take advantage of annotations,
the ++VM language provides the flexibility to improve performance; if either party
decides not to, though, the language will continue to function.

Potential Disadvantages Though there are many advantages of using annota-
tions, compilers and implementers should be aware of the potential drawbacks of using
annotations. Two minor disadvantages are that annotations may result in potentially
large increase in code sizes, and the fact that a potentially non-trivial amount of code
may be ignored by most other virtual machine implementations. A more important

CHAPTER 10. CODE SUPPORT 93

issue, however, is that the overuse of annotations may make certain code blocks heav-
ily dependent upon specific virtual machine implementations; programmers must be
especially careful not to use attributes to achieve performance targets. Despite these
disadvantages, the ++VM chooses to implement annotations because of the many
potential benefits that they can provide for future virtual machine designers.

Chapter 11

Code Groups

When high-level languages organize their code, they break the code up into sections in
order for more efficient processing. Though many virtual machines break create these
sections at runtime, these subsections can also serve as compile-time organizational
units. Using a block structure would allow a compiler to group associated code units
together, leading to a virtual machine that is more aware of the high-level behavior
of its code and better able to optimize and execute code.

The ++VM supports several ways to group chunks of code together. First, the
compiler can insert code blocks directly into the compiled code. These blocks can be
used as ways to reduce code size, as ways to suggest potential code optimizations, or
a combination of the two. Additionally, the programmer can reference pre-written
code blocks stored in a library. These code blocks may perform a certain operation
extremely efficiently, perhaps by running native code, and also provide a convenient
interface for making use of previously existing code.

The remainder of this chapter discusses code groupings in the ++VM. It intro-
duces the block structure and library structure, then discusses the various potential
uses of each for writing efficient programs. It concludes with a discussion of the
numerous performance and organizational benefits that code groups can provide.

11.1 Code Blocks

In the ++VM, code blocks provide a convenient way to group opcodes together
and to provide additional high-level information to the just-in-time compiler.

94

CHAPTER 11. CODE GROUPS 95

11.1.1 Defining blocks

A block definition has three parts: the block header, the block body, and the block
footer. A picture of a code block is shown in figure 11.1.

0 0 1 1 1 0 0 0 0 0 FRQ FRQ E C V V

start +15

start block

RES RES RES RES PAR PAR CON CON PMZ PMZ PMZ INL INL CSH CSH CSH

+16 end

exitension

X X X X X X X X X X X X X X X X

start +15

block opcodes

X X X X X X X X X X X X X X X X

+ ... end

block opcodes

0 0 1 1 1 0 0 1 B B D D D D D D

start end

end block

Figure 11.1: A ++VM code block

Header The block header consists of a single opcode, the block creation opcode.
As shown in figure 11.1, the block header consists of the first opcode in the block
and an additional extension word’s worth of attributes. This opcode denotes a code
block because the two most significant bits in the attribute word are 00, indicating
that the remainer of the block will consist of ++VM opcodes. Block attributes can
be subdivided into two sections: block attributes, attributes which convey informa-
tion about how the block should be optimized, and opcode attributes, which convey
information about the context in which the block will be used. These attributes are
discussed in Section 11.1.2

CHAPTER 11. CODE GROUPS 96

Body The block body consists of the collection of opcodes which are associated
with a particular block. Block bodies can be of arbitrary length and can make use of
all intrinsic and extrinsic opcodes; a block body ends when the end block opcode is
reached. Block bodies can reference, as well as define, other blocks, and are allowed to
invoke library functions. However, blocks are not allowed to make circular references;
a block cannot include any block which eventually calls itself.

Footer The block footer, the last opcode seen in figure 11.1, consists of the end
block opcode followed by the opcode to which this block should be associated. The
opcode to which the block will be assigned is a number between 64 and 255; the
particular opcode chosen will affect the scope in which the block is visible. For more
information on the opcode scope, see Section 11.3.

11.1.2 Block Attributes

There are six different types of block attributes in the ++VM.

FREQUENCY The two FRQ bits specify how frequently the block will be ac-
cessed and may provide information that is helpful to the cache. If the block is
frequently accessed, the virtual machine should try to keep it in the code cache.

PARALLELIZE The two PAR bits specify whether the block can be parallelized
over multiple threads. These bits can be used to encourage, discourage, or
forbid the virtual machine from parallelizing block computation.

CONSTANT The two CON bits specify whether the inputs to the block are con-
stant. If inputs are constant, the virtual machine may be able to perform a
number of aggressive constant folding techniques.

OPTIMIZE The three PMZ bits specify an optimization level. This optimization
level can vary from strict interpretation to complicated optimization, though
increasing optimization levels may detract from performance since host instruc-
tion generation may take longer.

INLINE The two INL bits specify whether this block should be inlined wherever it
is called. Inlining blocks can speed up code execution, though it can also cause
code to rapidly expand in size.

CHAPTER 11. CODE GROUPS 97

CACHE The three CSH bits indicate another reference register with which this
block will be frequently called. The virtual machine should place the block in
such a way so that it minimizes cache conflicts with the reference in this register.

In addition to these attributes about general block behavior, each block can define
up to eight attributes which are specific to a block. These attributes, the user-specified
attributes, are equivalent to an eight-bit annotation that can be applied to a block.
The user-specified attributes allow the programmer to provide extra information to
the block when executing the block instruction. The implementation of these user-
specified attributes is not defined and is left to individual virtual machine designers.

11.2 Accessing Libraries

In contrast to blocks, code groups that are written by the end programmer, libraries
are written by the virtual machine implementer in order to extend the functionality of
the ++VM. Linking an opcode to a library is an easy way to access additional features
that are not available in the ++VM instruction set or to access pre-optimized code
for a particular function.

11.2.1 Libraries

There are two types of libraries in the ++VM: standard libraries and utility libraries.

Standard Libraries The standard libraries contain ++VM instructions that link
the virtual machine to the operating system and the hardware. These standard
functions will all be implementation-specific. For instance, the standard libraries will
have operations to print a line on the screen or to interact with shared memory in
the system. Standard libraries must be provided along with all implementations of
the ++VM virtual machine.

Utility Libraries The utility libraries contain instructions that are very similar
to blocks. These instructions may be no more than a collection of opcodes linked
together, but they can also be chunks of code that have already been optimized for a
particular architecture. The utility libraries will contain useful data structures as well
as functions; for instance, it might contain hash tables and string searching methods.
While the presence of utility libraries will greatly enhance the performance of the
++VM, utility libraries are not required for the functioning of the virtual machine.

CHAPTER 11. CODE GROUPS 98

11.2.2 Binding Libraries

Library functions, like blocks, can be bound to opcodes. This is done using a special
setting of the block opcode, as seen in figure 11.2.

0 0 1 1 1 0 0 0 1 1 FRQ FRQ E C V V

start +15

start block

RES RES RES RES PAR PAR CON CON PMZ PMZ PMZ INL INL CSH CSH CSH

+16 +31

exitension

LIB LIB LIB LIB LIB LIB LIB LIB LIB LIB IND IND IND IND IND IND

+32 end

library index

0 0 1 1 1 0 0 1 B B D D D D D D

start end

end block

Figure 11.2: A ++VM library call

Header The library header consists of a single opcode, the block creation opcode.
As shown in figure 11.2, the block header consists of the first opcode in the block and
an additional extension word’s worth of attributes. This opcode denotes a library
function because the two most significant bits in the attribute word are 11, indicating
that the remainder of the instruction will consist of machine instructions coming
from a library. Library functions share the same set of attributes as blocks; more
information about these attributes can be found in Section 11.1.2.

Body The library body in figure 11.2 consists of a call to a sequence of native ma-
chine instructions, though library functions also be calls sequences of ++VM opcodes
instead.

Footer The block footer, the last opcode seen in figure 11.2, consists of the end
block opcode followed by the opcode that this library function should be associated.

CHAPTER 11. CODE GROUPS 99

The opcode to which the block will be assigned is a number between 64 and 255; the
particular opcode chosen will affect the scope in which the block is visible.

11.3 Using Code Groups

Blocks and libraries are used in the same way through the use of extrinsic opcodes.

11.3.1 Usage

A block or library is used by invoking the opcode to which it has been bound. The
opcode instruction for a block must be between 64 and 255; the block must have been
previously bound using the block mechanism described in Section 11.1. Blocks can
have up to eight bits of user-specified attributes in the attribute byte of the block
instruction.

X X X X X X X X

63 0

0 0 0 0header

X X X X X 0 0 0

start + 63

1 0 0 0first method

X X X X X 0 0 0

+ ... end

1 0 0 0last method

X X X X X 0 0 0

63 0

1 0 0 0class VTABLE

X X X X X 0 0 0

start + 63

1 0 0 0code block 64

... 0 0 0

+ ... + ...

1 0 0 0other blocks

VTable

X X X X X X X X

63 0

0 0 0 0header

X X X X X X X X

start + 15

0 0 1 0opcode

X X X X X X X X

+ 16 + 31

0 0 1 0opcode

X X X X X X X X

63 0

1 X X Xclass CODE

X X X X X X X X

+ ... end

0 0 1 0opcode

Code

0 0 1 1 1 0 0 0 0 0 FRQ FRQ E C V V

start +15

start block

RES RES RES RES PAR PAR CON CON PMZ PMZ PMZ INL INL CSH CSH CSH

+16 end

exitension

X X X X X X X X X X X X X X X X

start +15

block opcodes

X X X X X X X X X X X X X X X X

+ ... end

block opcodes

0 0 1 1 1 0 0 1 B B D D D D D D

start end

end block

Block

Figure 11.3: Block Use

Figure 11.3 depicts how the ++VM executes a block - in this case, a block bound to
a particular method - if the block is not inlined. When the virtual machine encounters
a block opcode or a library opcode while executing method code, it determines the
location of the code bound to the block by checking the method vtable. The index
in the vtable specifies the location of the code which can then be executed. However,
if the block had been inlined through the use of the inline attribute, the block’s
code would have been inserted directly in the method when both were just-in-time
compiled; no lookup would be necessary.

11.3.2 Scope

Before a block or a library function is used, it is necessary to verify that the particular
opcode is in scope. There are three possible opcode scopes: per-method scope, per-

CHAPTER 11. CODE GROUPS 100

class scope, and per-thread scope. If a particular opcode is not defined, or is defined
in the wrong scope, the virtual machine will throw an exception and must not execute
the incorrect block.

Per-Method Blocks A class can define up to sixty-four unique per-method op-
codes by using the extrinsic opcodes opcodes numbered between 64 and 127. Per-
method blocks can only be used inside a particular method, and cannot be used by
other methods in a class. One implementation for looking up blocks or library func-
tions would be to attach them to the end of a particular method and to jump to the
appropriate block accordingly.

Per-Class Blocks A class can define up to sixty-four unique per-class opcodes by
using the extrinsic opcodes numbered between 128 and 191. Per-class blocks can be
accessed in any method that the particular class defines, but cannot be accessed from
outside of that class. One implementation for looking up the block or library function
associated with per-class opcodes would be to look for these blocks an offset within
the class vtable.

Per-Thread Blocks A class can define up to sixty-four per-thread opcodes by
using extrinsic opcodes numbered between 192 and 255. Per-thread blocks can be
accessed in any method of that thread; however, methods in other threads are unable
to access these blocks. One implementation for looking up blocks with these opcodes
occurs from an offset within the thread vtable. Opcodes defined in one thread cannot
be used in another thread; the block or library must be defined separately in each.

Block Use Blocks should be placed in the minimal necessary scope. Thus, blocks
should be defined at the method level wherever possible and only defined at the thread
level when absolutely necessary. When a block must be used in multiple methods,
a per-class opcode should be used; when used in multiple classes, a per-thread one
should be employed. As there are only a small number of the larger-scoped opcodes,
however, compiler writers should take great care in assigning to them.

11.4 Features of Code Groups

Grouping code, whether via code blocks or library functions, can provide a number of
significant advantages, including the preserving high-level information, pre-arranging

CHAPTER 11. CODE GROUPS 101

JIT blocks, providing JIT hints, allowing for joint optimizations, supporting anony-
mous blocks, encouraging code reuse, and highlighting the parallels between code
groupings.

Information Preservation Blocks and library functions provide an excellent way
of conveying more high-level information directly to the virtual machine. If the blocks
reflect the high-level structure of the code, then the optimizer will have a better
picture of what the user’s intentions and programming style. Using this information,
the ++VM just-in-time compiler will be able to make more informed choices as to
what kinds of optimizations to perform.

Pre-Arranged Blocks When a just-in-time compiler optimizes code, it does so by
first breaking the code into sections. In the ++VM, the block structure of the code
allows the static compiler to provide this information to the JIT rather than forcing
the JIT to make potentially incorrect assumptions about optimization blocks.

JIT Hints Furthermore, this block optimization scheme allows for the static com-
piler to give hints to the just-in-time compiler. For instance, if a certain block will
be executed multiple times, the static compiler can tell the JIT to heavily optimize
a particular section of code without waiting for the JIT to discover this itself. Ad-
ditionally, if a particular section of code will be particularly difficult to just-in-time
compile, the static compiler may be able to give a precise estimate of its cost.

Joint Optimizations If blocks are nested within each other, the just-in-time com-
piler may be able to perform optimizations that cross block boundaries. For instance,
it may be able to create a more favorable machine register allocation by having more
information about the surrounding block.

Anonymous Blocks The ++VM provides some support for “anonymous” blocks
by allowing blocks to be easily overridden. The opcodes in an anonymous block can
be optimized according to the block attributes, but the optimizations will not be
available in more than one location in the code. Anonymous blocks provide way
of grouping opcodes together so that the JIT compiler can recognize the high-level
structure of the code, but without tying down one particular opcode for an entire
method.

CHAPTER 11. CODE GROUPS 102

Code Reuse These code grouping schemes highlighted in this section encourage
the principle of code reuse. If a section of code is repeated multiple times, it may be
worthwhile for a compiler to pull it aside once and use an opcode that references it
multiple times. Since block nesting is allowed, compilers may be able to using nested
blocks to further decrease the size of the code. As an added advantage, this decrease
in code size will not lead to a decrease in runtime performance if the just-in-time
compiler can inline the code.

Code Group Interface By treating all code groups in a similar fashion, the ++VM
highlights the symmetry between code blocks and library functions. The common
syntax comes as a result of common behavior: both blocks and libraries perform
similar functions, and the virtual machine should perform the same tasks in order to
support both of the. For instance, the just-in-time compiler can attempt to perform
the same types of optimizations, including inlining and code manipulation, to library
functions as well as blocks. By treating both code groups in similar ways, the ++VM
highlights the similarities between them.

Chapter 12

Control Flow

A program is more than a linear sequence of commands. Program execution jumps
around using various devices to control code execution. From Lisp to Java, past
virtual machines have used a number of opcode-level mechanisms to channel execu-
tion within a method, including logical branches and exception handling. However,
controlling program execution in a high level language can be very expensive. Just-
in-time compilers have attempted to improve upon the performance of these mecha-
nisms to keep the host processor busy executing new instructions instead of idling and
waiting for a failed branch prediction to load from memory. Using JIT techniques,
high-level languages have been able to greatly improve program performance.

The ++VM attempts to improve upon past work with virtual machines and fur-
ther increase the speed of execution flow; it attempts to integrate the virtual machine
more closely with hardware and with the cache in order to improve overall code execu-
tion speed. The ++VM accomplishes this in three ways. First, it uses built in branch
prediction for logical jumps and also provides opcode-level support for futures. This
allows for a more flexible method for changing control flow within a method. Second,
it uses annotation opcodes to indicate the presence of loops and other repeated ex-
pressions. This allows a JIT to have a better picture of the high-level code layout so
that it can perform more efficient optimizations. Lastly, the exception mechanism can
be annotated to provide better performance. This allows the just-in-time compiler
to understand how the exception mechanism will behave during code execution and
allow it to optimize certain code sections accordingly.

The remainder of this chapter is organized as follows. The first part of this chapter
explains how the ++VM supports logical control and the features of this approach.
The next part introduces loop structures and discusses the benefits of using loop
structures. The chapter concludes with a discussion of exceptions in the ++VM and

103

CHAPTER 12. CONTROL FLOW 104

the features that this exception mechanism provides.

12.1 Logical Control in the ++VM

The most common manner of transferring control is via a local jump, a process that
changes the program counter value possibly based on a condition. All local jumps are
controlled by the values in the condition code register. For more information about
the condition code register, see Section 6.1.3.

12.1.1 Comparisons

In order to branch, the bits in the condition code register must be set appropriately.
This can be done implicitly, as the result of an instruction writeback, or explicitly, as
a result of a comparison operation.

Implicit Writeback Every time the virtual machine performs an opcode operation,
it writes back the condition codes corresponding to the operations result. Upon the
completion of an instruction, the condition code register is set to reflect that result,
allowing the next instruction to use the condition code bits in order to control program
execution. In a sense, every operation performs an implicit comparison operation
because all operations will result in changes to the condition code register.

Explicit Writeback The ++VM has several instructions to perform explicit write-
back operations. These instructions are designed to prepare the condition code reg-
ister in order to facilitate a branch. The compare data values instruction, CMD, sets
the condition code bits based upon the comparison of two data values. The compare
reference values instruction, CMR, sets the bits based on two reference values. The
compare within bounds instruction, CMB, is a three-operand instruction that tests
whether one data value is between two other values. These instructions should be
used sparingly, as ++VM code should rely on implicit writeback wherever possible.

12.1.2 Branching

The ++VM has four kinds of jump statements: jumps on current values, jumps on
initialization and future bits, jumps on other condition control register bits, and jump
on previous values bits.

CHAPTER 12. CONTROL FLOW 105

Current Values The virtual machine has an opcode for branching on the negative
(n), zero (z), and overflow (v) bits of the condition code register. These bits are the
standard bits used for most logical jumps.

Exceptions The virtual machine has a setting to branch if the exception bit is
set. Additionally, there are settings to branch if an arithmetic overflow or arithmetic
underflow occurred. This can be used to ensure that all values in the virtual machine
are in a consistent state and that information is not accidentally lost.

Futures The virtual machine has a setting to branch based on whether or not the
current value is a future. This can be used to ensure that operations are not performed
on values which have not yet been computed.

12.2 Features of Logical Control

The branching scheme as outlined above allows for a more flexible and versatile man-
ner of logical control. This, in turn, can give rise to many features that are not present
in other virtual machines.

Branch Prediction All branch instructions in the ++VM have an inherent pre-
dictive element. For instance, a branch on equals opcode will prepare the cache and
instruction stream in a manner that assumes that the branch will succeed. If the
branch is not likely to succeed, the static compiler should rewrite the instruction.
When the just-in-time compiler is run, it may be able to infer more nuanced infor-
mation about the likelihood of a particular branch; the opcodes provide only rough
information as to whether or not the conditional will succeed.

Bounds Checking The ++VM is able to perform bounds checking using the condi-
tion code register. The bounds opcode compares three numbers to determine whether
the number being tested is in between a lower and upper bound. If the bounds test
succeeds, it sets the z bit in the condition code register, signaling equality; if it fails,
it sets the other bits appropriately. The bounds test can be followed by a conditional
jump to take advantage of this information. Bounds testing can often be done effi-
ciently in hardware, and the ++VM attempts to mimic that simplicity and possibly
achieve better performance.

CHAPTER 12. CONTROL FLOW 106

Pipelining By keeping track of the penultimate values in the condition code regis-
ter, the virtual machine is able to potentially improve pipelining within the processor.
Failures in instruction prediction can be potentially costly, as it may be necessary to
wait for a processor pipeline to refill with instructions from the alternate pathway. By
allowing branches on the penultimate instruction, the ++VM provides a mechanism
for potentially minimizing the number of incorrect branch predictions: once a test is
run, the virtual machine executes an intermediate instruction while it decides which
instruction to load in the pipeline.

Performance Condition code registers are extremely common in processors, as
some form of condition code register is commonly used for branching at the hardware
level. However, condition code registers are rarely found in virtual machines: lan-
guages from Smalltalk to Java prefer to push and pop conditional arguments from the
stack and branch accordingly. The use of a condition code register will likely result in
an overall performance increase. For one, the use of a register to store condition code
information will save the virtual machine from pushing and popping stack arguments.
Additional performance increases can be realized if the condition codes are directly
supported by the host’s hardware, as often may be the case.

Skimping When virtual machines are implemented completely in software, it may
be possible to omit certain updates of the condition code register in order to improve
performance. During code execution, the virtual machine will be able to identify
blocks of code which do not immediately precede logical jumps. In these areas, the
virtual machine will be able to avoid updating the condition code register as those
bits will never be used by a jump instruction. As long as the virtual machine is able
to properly reconstruct the contents of the condition code upon an exception or an
internal error, a software implementation of the ++VM is free to take shortcuts and
make optimizations to improve performance.

12.3 Loops in the ++VM

In the ++VM, loops are implemented using an annotation specifically designed for
loops. This annotation helps to convey information about the loop to the just-in-time
compiler and to the cache. The loop opcode itself is not interpreted by the virtual
machine; instead, it signals the boundaries of the different blocks that make up a
loop.

CHAPTER 12. CONTROL FLOW 107

12.3.1 Using Loops

Loops in the ++VM are divided into four component blocks, as detailed in figure 12.1.

0 0 1 0 1 1 0 1 Z Z M M B B P P

start +15

loop

RES RES NRL NRL PAR PAR GTH GTH PMZ PMZ PMZ REG DIR DIR ARR ARR

+16 end

attributes

0 1 X X X X X X ATR ATR ATR ATR ATR ATR ATR ATR

start end

initialize block

0 1 X X X X X X ATR ATR ATR ATR ATR ATR ATR ATR

start end

compare block

0 1 X X X X X X ATR ATR ATR ATR ATR ATR ATR ATR

start end

update block

0 1 X X X X X X ATR ATR ATR ATR ATR ATR ATR ATR

start end

body block

Figure 12.1: A ++VM loop

12.3.2 Loop Components

Loops consist of four component blocks: the initialization component block, the com-
parison component block, the body component block, and the continue component
block. Though loop component blocks may be code blocks, they do not have to be.

Initialization The initialization block, specified by the ZZ bits in figure 12.1, is
executed on loop entry. The ZZ bits specify the method of determining how to find
the initialization block in the opcode stream. It contains code to set up variables that
are in scope within a loop and to initialize those variables to the proper value. The
initialization block will only be executed once before execution proceeds to the loop
body.

CHAPTER 12. CONTROL FLOW 108

Comparison Block The comparison block, specified by the MM bits in figure 12.1,
is executed each time through the loop. The MM bits specify the method of deter-
mining how to find the comparison block in the opcode stream. If the comparison
succeeds then the loop body is executed, otherwise execution will continue with the
code that follows the loop. An attribute can be set to skip the comparison block
immediately after the initialization block; this will allow for the representation of a
do-while loop.

Loop Body The loop body, specified by the BB bits in figure 12.1, contains the
instructions that will be executed repeatedly until the expression in the comparison
block is false. The BB bits specify the method of determining how to find the loop
body in the opcode stream.

Continue Block The continue block, specified by the PP bits in figure 12.1, holds
code that is executed every time execution successfully reaches the bottom of the
loop body. The PP bits specify the method of determining how to find the continue
block in the opcode stream. It can perform modifications to a loop counter or some
other common iteration technique. The continue block can be explicitly skipped using
instructions that branch back explicitly to the comparison block.

12.4 Features of Loops

The ++VM gains several advantages by representing loops in this fashion. As current
virtual machines do not have loop opcodes, they are not able to take advantage of
these features.

Loop Attributes In the ++VM, loops can have a variety of attributes. For in-
stance, it is possible to specify whether a loop should be unrolled, whether a loop
should be parallelized, or even whether the loop counter will move in a predictable
fashion. The ++VM virtual machine can use this information to speed up compu-
tation, to move computation around between different threads, and to manage the
cache as efficiently as possible.

Loops as Code Blocks Conceptually, loops and code blocks are very similar:
in the same way that a code block brings together a group of opcodes together with
attribute information, a loop brings together four blocks with annotation information.

CHAPTER 12. CONTROL FLOW 109

Both loops and code blocks provide additional information about code behavior in
order to generate efficient JIT code. For more information about code blocks, see
Section 11.1

Loop Components as Code Blocks Every loop component can be a code block,
a feature with two benefits. First, code blocks can be optimized individually. Addi-
tionally, though, blocks can mark loop boundaries so as to give hints about how the
loop control structure will perform in aggregate. By first presenting the component
blocks individually, then presenting the code together, the layout of the loop opcode
provides a suggestion as to how the loop should be optimized.

Caching and Prediction The loop opcode provides support for caching and branch
prediction in ways not found in other virtual machine instruction sets. Other lan-
guages do not provide explicit hints as to different sections of loops, and instead rely
on a series of branches in order to establish loop behavior. The ++VM, on the other
hand, will be able to determine which loop block will be executed next, allowing the
virtual machine to prepare the cache more intelligently.

Parallelization The loop opcode allows the compiler to convey information about
if or how the loop can be parallelized. If statements in the loop body do not have
side effects, the virtual machine may be able to spawn new threads - or ship loop
sections off to other processors - for faster computation. If the compiler can provide
this information at compile time, the virtual machine will be more prepared to make
high-level decisions about how to execute the loop and what resources the loop should
be given.

Loop Counters Though the static compiler initially assigns registers, the virtual
machine may choose to reassign them at runtime. The loop opcode, however can tell
the virtual machine whether or not the loop counter register should be permanently
assigned to a register because it will be commonly used and commonly accessed. For
instance, in small loops it is essential to reserve a register for the loop counter rather
than copy it back and forth from memory. This assignment can improve overall
performance.

CHAPTER 12. CONTROL FLOW 110

12.5 Exceptions in the ++VM

The virtual machine has two ways of throwing exceptions as well as two ways of
handling exceptions.

12.5.1 Explicit Exceptions

An exception can be thrown explicitly using the TRW instruction, as shown in fig-
ure 12.2. Explicit exceptions are created as instances of a subclass of the class Ex-
ception; the particular class of the exception is specified in the constant pool of the
throwing class. The exception to create is specified by an index into the throwing
class’s constant pool. If the index can be represented with five bits or less, the entire
throw instruction fits onto a single word; otherwise, an additional extension word is
needed to represent the entire ten-bit address.

0 0 0 1 1 1 1 0 GEN GEN FRQ FRQ E U CTH CTH

15 0

word 0

I I I I I I I I I I HDL HDL NTL CSH CSH CSH

15 0

word 1

Figure 12.2: The Throw Opcode

Explicit instructions can have several attributes.

GENERATION The GEN bits specify how long the exception will live, and pro-
vides a hint to the virtual machine about garbage collection. Increasing levels
provide information about how long the exception will live; only in rare cases
will it be necessary to state that exceptions will live for a long time

FREQUENCY The two FRQ bits specify how frequently the exception will oc-
cur. From this frequency information, the virtual machine can decide which
exception handling scheme to use

CATCH The two CTH bits specify where the exception will likely be caught. This
information can be used to jump-start a search for an appropriate exception
handler

CHAPTER 12. CONTROL FLOW 111

HANDLE The two HDL bits specify how the exception will be caught. This pro-
vides some prediction information about the behavior of the handler and may
speed up exception throwing by allowing the virtual machine to eliminate un-
used information

INITIALIZE The NTL bit indicates whether this object should be initialized. If the
exception handler uses only the class of an exception object without accessing
any fields in the exception itself, then the exception initialization method should
be skipped.

CACHE The three CSH bits indicate another reference register with which this
exception will be used. By allocating the exception intelligently, the virtual
machine may be able to speed up code execution.

12.5.2 Runtime Exceptions

The virtual machine will also throw exceptions on its own accord if opcode parameters
is malformed; these exceptions are runtime exceptions. For instance, it will throw an
arithmetic exception if the virtual machine attempts to divide by zero. The virtual
machine will also throw exceptions if casts or conversions fail, or if the operands to
a particular instruction are not of the same type. Runtime exceptions are handled
using the same exception handling scheme as is used for all other exceptions.

12.6 Handling Exceptions

The ++VM has two methods of handling exceptions, stack unwinding and stack
cutting.

12.6.1 Stack Unwinding

Exception handling via stack unwinding, the default handler for high-level languages
like Java, is most efficient in cases when exceptions are rare. When an exception is
thrown, the virtual machine looks for a handler in a side table. The program counter
is used to search in an exception table to determine the appropriate handling code; if
an exception handler is not found in the current method, its frame is popped off the
stack and the search process is repeated in caller methods.

When using stack unwinding, there is no penalty in the expected execution path.
Though looking up an exception is a relatively inefficient process, it does not require

CHAPTER 12. CONTROL FLOW 112

any setup. When using stack unwinding, it is not necessary to use an opcode to set
up a try-catch block; the try-catch block is handled in a side table. Additionally,
this scheme has the advantage that the side table can be kept separate from the
primary opcode stream, meaning that it does not have to be loaded into cache until
an exception is thrown.

12.6.2 Stack Cutting

Exception handling via stack cutting, used in high-level languages such as Perl6, is
most efficient when exceptions are relatively common. Before entering a block that
can throw an exception, the virtual machine explicitly loads an exception handler.
Typically, the handler loading process involves saving the type of exception in a list
of try blocks; in the ++VM, this is implemented by saving the exception handler in a
stack held in a dedicated thread register, the exception register. When an exception
is thrown, the virtual machine jumps to the appropriate block using the exception
register as a guide as to where to handle the exception.

When stack cutting is used, there is a substantial penalty in the expected path.
Every time a try block is entered, it is necessary to change the value in the exception
register. Additionally, every time execution leaves a try block normally, it is necessary
to remove that exception from the exception register and restore the old value. When
exceptions are rare, this involves a substantial amount of overhead that could be
avoided by using stack unwinding.

12.6.3 Finally Blocks

Unlike many other high-level language virtual machines, the ++VM does not provide
direct support for finally blocks. A finally block is a block of code that will be
appended to every possible pathway through the exception handler, whether that
pathway contains an exception or not. As finally blocks cannot be implemented
easily and efficiently in hardware, they are not included in the basic specification of
the virtual machine. Language designers who wish to use the ++VM may choose
to implement finally blocks in a supplemental instruction set. It is expected that an
implementation of finally blocks will probably make its way into the standard libraries
that come along with the virtual machine.

CHAPTER 12. CONTROL FLOW 113

12.6.4 Errors

The ++VM uses the exception-throwing syntax to throw virtual machine errors.
However, because errors are unrecoverable problems within the virtual machine, they
cannot be caught and will cause the virtual machine to shut down.

12.7 Features of the Exception Mechanism

The implementation of exceptions in the ++VM allows for dynamic handler changing,
exception attributes, and handler attributes.

Dynamic Handler Changing The ++VM has two exception handlers, one that
uses stack cutting and one that uses stack unwinding. When an exception handler is
created, the user or the compiler can specify whether the exception is likely to occur
or not. If the compiler or the user is able to predict that exceptions are likely to occur,
the virtual machine can use the JIT to implement a stack cutting mechanism which
catches exceptions efficiently. On the other hand, if the compiler is able to predict
that exceptions are rare, the JIT should use a stack unwinding strategy. Because
the virtual machine can dynamically change its exception-handling strategy based on
attributes in the opcode stream, it should be able to handle exceptions much more
efficiently than if it were required to commit to an exception handling strategy before
commencing code execution.

Exception Attributes The exception throwing opcode provides a number of at-
tributes which can help the virtual machine support exceptions more efficiently. Cou-
pled with an effective error handling technique, this will help improve overall perfor-
mance.

Handler Attributes The handler setup opcode provides a number of attributes
which can help the virtual machine decide on an appropriate exception handler and
to handle exceptions efficiently. For instance, the handler opcode can provide infor-
mation about exception frequency, handler lifetime, where a caught exception will
be thrown, and the specific exception that is being caught. All of these properties
can help increase overall performance by giving the virtual machine more information
about how the code operates.

Chapter 13

Conclusion

The science of constructing high-level language virtual machines can no longer be
treated as an afterthought in language and hardware design. On the one hand, the
current increase in the number of virtual machines can be seen as a reaction to the
lack of improvements in modern hardware. Language designers want certain features
today, and hardware designers have not provided them. On the other hand, hardware
designers have found that virtual machines provide a convenient escape mechanism
to avoid implementing abstract concepts in silicon. Hardware designers can provide
efficient support for high-level code, but only if they have a firm understanding of
what that code is doing. The ++VM virtual machine attempts to address these
desires by creating a modern virtual machine that supports contemporary, and future,
programming styles.

13.1 Features of the ++VM

Two common criticisms of virtual machines is that they are slow and that they are
unnecessary. Neither of these need be the case. Virtual machines, and the ++VM
especially, are now beginning to address both of these concerns. The preceding chap-
ters have introduced a number of features that convincingly counter these criticisms.
While the advantages of these features have been described in the context of the
++VM virtual machine, they are applicable to other virtual machines as well.

Speed Virtual Machines do not have to be inefficient. Though historically languages
running on virtual machines have been much slower than those compiled to machine
code, some of this performance hit has been due to intentional design decisions. This

114

CHAPTER 13. CONCLUSION 115

need not be so. Virtual machines like the ++VM should be forward-thinking in
terms of hardware and software: since they are at the intersection of hardware and
software design, they can help both groups develop new and more efficient compu-
tation techniques. The ++VM achieves more efficiency in a variety of ways. First,
++VM instructions are intended to mesh well with current hardware. By supporting
registers, providing a mechanism for interacting with the cache, and giving as much
information as possible to hardware branch prediction mechanisms, the ++VM works
in conjunction with the hardware to improve better performance. Additionally, the
++VM provides a powerful mechanism for hints to the just-in-time compiler. By
using attributes and annotations, users can increase the performance of the JITed
code as well as decrease the amount of time that the virtual machine must spend
creating it.

Attributes Currently, hardware manuals and virtual machine specifications only
specify required bits. This need not be the case: the ++VM introduces a system
by which compilers and language designers can provide additional information to the
virtual machine, but the machines can either take or leave this information. This
allows implementers to decide what forms of information are important to the oper-
ation of a machine and what forms of information are superfluous. Certain ++VM
attributes may be helpful to all implementations, such as attributes that specify the
types of objects with which an object will be used; other attributes might not be
so useful, such as generational garbage collection attributes on implementations that
choose to use a mark-sweep collector. Optional attributes allow compilers to specify
as much information as they desire while allowing an implementation to ignore this
information and still function correctly

Annotations Machines, like humans, should comment their code. When a ma-
chine executes a sequence of low-level instructions, it may not be able to determine
the context of these operations without some form of reflection. By providing a means
of providing annotations or attributes to the code, machines like the ++VM will be
able to understand the larger environment of the instruction. Using annotation in-
formation, a machine can perform a variety of optimizations to better support the
operation. The ++VM supports a variety of annotations: in addition to opcode
attributes and annotation blocks, it supports memory tagging, which provides in-
formation about the layout of memory, as well as object headers, which can store
information about the behavior of an object. These allow the virtual machine to
have an annotated picture of its memory space and may help it optimize memory

CHAPTER 13. CONCLUSION 116

use. Additionally, annotations serve as a communication link between the platform-
independent opcode stream and the host processor: as many processors reorder or
modify their operations. The ++VM annotations assist this reordering process by
providing the host system with additional information about the global state of the
++VM user program. Lastly, annotations can be used to directly influence the ex-
ecution mechanisms of the virtual machines. Annotation information can be used
to enable certain features of the virtual machine, such as exception handling mecha-
nisms or generational garbage collection, or can be used by the just-in-time compiler
to develop a more accurate picture of how the code should be executed.

Opcode Layout Virtual machine designers have leeway to introduce novel features
to the layout of their instruction set. While past virtual machines have sought to lay
out code in a platform-independent manner, virtual machines should consider ways of
laying out code to improve efficiency. The ++VM introduces a number of new ways
of looking at code layout issues. For one, the ++VM provides the block mechanism,
a way in which a commonly-used string of opcodes to be available everywhere but
stored in one location. This facilitates the compression of offline code, helps preserve
some of the high-level structure of the source code, and provides hints to the just-in-
time compiler as to the boundaries of a program’s basic blocks. Lastly, the ++VM
code annotation mechanism provides meta-information about code execution, a form
of commenting that a virtual machine may be able to understand. Code annotations
convey information about the instructions, and can make the code more specific, more
informative, and faster.

Polymorphism Machines should be designed to be as flexible as possible in order
to support various data types, and virtual machines are in an enviable position to be
able to exploit this using polymorphic instructions. The ++VM uses polymorphism
in several ways. First, the ++VM chooses the specific machine instruction to exe-
cute based upon a value’s memory tag. For instance, math instructions and memory
movement instructions are defined generically; the specific instance of the polymor-
phic operation is chosen based on the runtime data type. Furthermore, the ++VM
attempts to highlight the conceptual similarity between many of the operations that it
implements. For instance, the virtual machine uses the same opcode family for code
blocks and library functions, and the same opcode family for creating objects and
arrays, because they are very similar from the programmer’s point of view. Lastly,
the implementation of polymorphism on the ++VM frees up a number of bits in each
opcode instruction as well as a number of opcodes in the instruction set. Because

CHAPTER 13. CONCLUSION 117

of the benefits provided by opcode polymorphism, the virtual machine can support
other important opcode features such as instruction attributes and blocks.

Object-Oriented Design Since many programmers use in object-oriented lan-
guages, virtual machines should continue to provide strong support for objects. Object-
oriented virtual machines need not be inefficient and slow, and future virtual machines
can address these performance issues with changes to how objects are treated. The
++VM attempts to make object-oriented design an integral part of the virtual ma-
chine while also improving performance. For example, objects in the ++VM are
treated as primitive types as the instruction set has direct support for object creation
and access. Object-oriented design has long been an important language feature and
the ++VM, and the ++VM includes strong support for objects in the hope that fu-
ture hardware designers will create object-oriented hardware to support similar virtual
machines in the future. Additionally, it uses several tag types to differentiate between
different kinds of objects. These tags can help improve virtual machine efficiency by
providing object-specific code and avoiding unnecessary pointers. Furthermore, the
++VM specification defines the layout of several object headers, including those for
list elements and classes. By choosing to implement these in a specific way, the vir-
tual machine implementation is more uniform and can integrate more efficiently with
external code sources.

Extensibility Virtual machines are much easier to extend than hardware. Hard-
ware architectures are rather brittle and can require a large design cycle to change; in
contrast, virtual machines can be modified, tested, and distributed - or scrapped - in
a much shorted period of time. There are a number of ways to extend the ++VM vir-
tual machine, ways that can be used to add new functionality or to improve existing
features. For instance, the block and library mechanisms provide ways to add new
functionality to the ++VM by tailoring a method’s opcodes to the method’s needs.
The ++VM can be quickly customized for the behavior of a particular method by
loading a new library function or binding a particular library block to a particular
instruction. Additionally, the annotation procedure makes it easier to tailor a virtual
machine to a specific task by adding additional context information. Annotations can
be added or ignored at will, allowing the virtual machine to expand in scope if the
user wishes to take advantage of the information provided.

Integration Virtual machines are designed to be easily modified to keep pace with
hardware development. As the functionality of hardware increases, the need for a

CHAPTER 13. CONCLUSION 118

large virtual machine in software diminishes. Over time, certain virtual machine fea-
tures should be shifted from being purely emulated in software to partially or fully
supported in hardware. Compared to compiled machine code, virtual machines can
be much more easily changed to take advantage of these changes as more and more
capable hardware becomes available. The ++VM is well poised to take advantage of
this. Many of its features, including tagged memory, condition code register support,
and garbage collection hooks, are designed to be easily integrated into future hard-
ware. As more complex architectures are developed in the future, more and more
++VM components can be implemented in silicon, decreasing the overall complexity
of the software component and improving performance.

Hardware Prototyping Virtual machines can also be used effectively to prototype
new hardware systems. Rather than writing a complete compiler for a new target
architecture, a hardware designer need only write an implementation of a thin virtual
machine in order to perform tests and can decrease the time necessary to roll out
new hardware and increase the overall pace of hardware development. The ++VM is
especially useful in this regard, as it may be easier to implement some features of the
++VM virtual machine, such as an opcode interpreter or the garbage collector sub-
system, than it would be to develop multiple compilers to support multiple languages.
Hardware architects may find it simpler to implement these smaller sub-systems of
the ++VM rather than changing the back-end of a compiler to implement and test
programs on a new type of machine.

13.2 Future Work

There are a number of ways in which the ++VM and other virtual machines can be
improved, including sample annotation creation, thread support, library definition,
and mapping languages and implementation.

Sample Annotation Creation The ++VM is among the first systems to intro-
duce a annotation system. Compiler writers may not know how to use this function-
ality, and it may be necessary to write a number of sample annotations in order to
demonstrate how these annotations should be used and how they can improve code
performance in the ++VM. Additionally, those who wish to extend the power of this
virtual machine, without directly modifying the instruction set, may wish to provide
a powerful suite of annotations for the ++VM opcode set.

CHAPTER 13. CONCLUSION 119

Threading The current ++VM specification hints at, but does not directly ad-
dress, the threading and scheduling components of the virtual machine. As paral-
lel and concurrent programs become more prevalent in the future, these areas will
become increasingly important as virtual machines like the ++VM will need to effi-
ciently support multiple execution streams. Those who wish to extend the ++VM
may wish to formalizing the thread and lock specifications, specify the thread swap-
ping and priority mechanisms, and examine the effectiveness of the suggested thread
synchronization mechanisms.

Library Definition Though the ++VM opcode set may be able to provide more
functionality than opcode sets of other languages, it is still necessary to define im-
portant native methods that must be in the core libraries. While some of these
functions are intuitive, such as methods for printing out strings or opening files, there
may a number of subtleties in filling out the libraries. Future work on the ++VM
may include codifying the types of library functions necessary to support the virtual
machine.

Mapping Implementation As of this writing, the ++VM has not been imple-
mented in software or in hardware. Some ideas suggested in this thesis have been
shown to be individually effective but have not been combined in a project of this
scale. Other ideas introduced in the ++VM are speculative, and there are no guar-
antees on how well the virtual machine will perform in practice. Future language
designers may wish to prototype sections of or the entirety of the ++VM in order to
determine whether these design decisions provide expected performance increases.

Mapping Languages Another area of future work is the mapping of languages
to the ++VM. It is expected that many high-level languages will easily map to
the ++VM, including such diverse languages as Java, Haskell, and Smalltalk. It is
also expected that this virtual machine will be able to support low-level language
programming for languages such as C. However, none of these claims have been
officially tested. Those who wish to continue working with the ++VM may wish
to implement some of these languages, or even entirely new languages, using the
++VM opcode set.

Appendix A

Tags

The first part of this appendix section specifies the data and reference values possible
in the ++VM. It also presents the tags associated with these values. For more
information about tagged memory, see Chapter 7.

How To Read This Section

Title The name by which the tag is called.

Figure A picture of how the tag is laid out in memory. The four bits to the right
specify the tag.

Description A description of the data or reference type.

Refers A picture of the reference value to which the reference type refers.

120

APPENDIX A. TAGS 121

A.1 Byte

B B B B B B B B

63 0

0 0 0 0

Figure A.1: Eight Bytes and Tag

This tag indicates that the associated sixty-four B bits are divided into eight
eight-bit bytes. The bytes are unsigned.

APPENDIX A. TAGS 122

A.2 Short

S S S S S S S S

63 0

0 0 0 1

Figure A.2: Four Shorts and Tag

This tag indicates that the associated sixty-four S bits are divided into four sixteen-
bit shorts. The shorts are unsigned.

APPENDIX A. TAGS 123

A.3 Word

W W W W W W W W

63 0

0 0 1 0

Figure A.3: Two Words and Tag

This tag indicates that the associated sixty-four W bits are divided into two
thirty-two-bit words. The words are signed.

APPENDIX A. TAGS 124

A.4 Long

L L L L L L L L

63 0

0 0 1 1

Figure A.4: Long and Tag

This tag indicates that the associated sixty-four L bits are one long word. The
long word is signed.

APPENDIX A. TAGS 125

A.5 Ultra

U U U U U U U U

63 0

0 1 0 0

U U U U U U U U

63 0

0 1 0 0

Figure A.5: First Word of Ultra and Tag

This tag indicates that the associated sixty-four U bits are half of an “ultra long”
memory value, a signed 128-bit integer stored in little-endian format. If the sixty-four
bits begin at a memory address that is divisible by sixteen, then the bits are the most
significant bits of the ultra; otherwise, they are the least significant bits. The ultra
is signed.

APPENDIX A. TAGS 126

A.6 Float

F F F F F F F F

63 0

0 1 0 1

Figure A.6: Two Floats and Tag

This tag indicates that the associated sixty-four F bits are divided into two thirty-
two-bit IEEE 754 floating point numbers. The floats are signed.

APPENDIX A. TAGS 127

A.7 Double

D D D D D D D D

63 0

0 1 1 0

Figure A.7: Double and Tag

This tag indicates that the associated sixty-four D bits are one double-length
IEEE 754 floating point number. The double is signed.

APPENDIX A. TAGS 128

A.8 Reserved

R R R R R R R R

63 0

0 1 1 1

Figure A.8: Reserved

This tag is reserved for future use for an additional data type. Memory locations
should not be tagged using this value.

APPENDIX A. TAGS 129

A.9 Standard Object

R R R R R 0 0 0

63 0

1 0 0 0

X X X X X X X X

63 0

0 0 1 0header

X X X X X X X X

63 0

X X X Xinst var 0

X X X X X X X X

63 0

X X X Xinst var 1

X X X X X 0 0 0

63 0

1 0 1 1assoc obj

X X X X X X X X

63 0

X X X Xinst var N

Object

X X X X X X X X

63 0

0 0 1 0header

X X X X X 0 0 0

start end

1 0 0 0code pointer

...

+ ... + ...

...static vars

X X X X X 0 0 0

63 0

1 0 1 1super class

X X X X X 0 0 0

start + 63

1 0 0 0code block 128

... 0 0 0

+ ... + ...

1 0 0 0other blocks

Class

Object Reference

X X X X X X X X

63 0

0 0 1 0header

X X X X X 0 0 0

start + 63

1 0 0 0first method

X X X X X 0 0 0

+ ... end

1 0 0 0last method

X X X X X 0 0 0

63 0

1 0 0 0class VTABLE

X X X X X 0 0 0

start + 63

1 0 0 0code block 64

... 0 0 0

+ ... + ...

1 0 0 0other blocks

VTable

Figure A.9: A Standard Object Reference

This tag indicates that the associated sixty-four R bits are a reference to an object.
The associated object reference of this object points to an associated class. The object
does not have a code pointer.

Since memory in the virtual machine is byte addressable, and objects in the virtual
machine must begin at sixty-four bit boundaries, the three least significant bits of
object references are reserved for use by the garbage collector.

APPENDIX A. TAGS 130

A.10 Object with Code

R R R R R 0 0 0

63 0

1 0 0 0

X X X X X X X X

63 0

0 0 1 0header

X X X X X X X X

63 0

X X X Xinst var 0

X X X X X X X X

63 0

X X X Xinst var 1

X X X X X 0 0 0

63 0

1 X X Xassoc obj

X X X X X X X X

63 0

X X X Xinst var N

Object

X X X X X X X X

63 0

0 0 1 0header

X X X X X 0 0 0

start end

1 0 0 0code pointer

...

+ ... + ...

...static vars

X X X X X 0 0 0

63 0

1 X X Xsuper class

X X X X X 0 0 0

start + 63

1 0 0 0code block 128

... 0 0 0

+ ... + ...

1 0 0 0other blocks

Class

Object Reference

X X X X X X X X

63 0

0 0 1 0header

X X X X X 0 0 0

start + 63

1 0 0 0first method

X X X X X 0 0 0

+ ... end

1 0 0 0last method

X X X X X 0 0 0

63 0

1 X X Xclass VTABLE

X X X X X 0 0 0

start + 63

1 0 0 0code block 64

... 0 0 0

+ ... + ...

1 0 0 0other blocks

VTable

Figure A.10: Object with Code Reference

This tag indicates that the associated sixty-four R bits are a reference to an object.
The associated object reference of this object points to an associated class. The object
has a code pointer that points to a vtable of methods associated with it.

The three least significant bits of object references are reserved for use by the
garbage collector.

APPENDIX A. TAGS 131

A.11 List Element

X X X X X X X X

63 0

0 0 1 0header

X X X X X X X X

63 0

X X X Xinst var 0

X X X X X X X X

63 0

X X X Xinst var 1

X X X X X 0 0 0

63 0

1 0 0 0assoc obj

X X X X X X X X

63 0

X X X Xinst var N

Object

R R R R R 0 0 0

63 0

1 0 1 0

R R R R R 0 0 0

63 0

1 0 1 1class BYTE heap

R R R R R 0 0 0

63 0

1 0 1 1class WORD heap

R R R R R 0 0 0

63 0

1 0 1 1class LIST free

R R R R R 0 0 0

63 0

1 0 1 1class RESERVED stack

Class Trap Vector

X X X X X X X X

63 0

0 0 1 0header

X X X X X X X X

63 0

X X X Xinst var 0

X X X X X X X X

63 0

X X X Xinst var 1

X X X X X 0 0 0

63 0

1 0 0 0assoc obj

X X X X X X X X

63 0

X X X Xinst var N

Object

List Element Reference

Figure A.11: List Element Reference

This tag indicates that the associated sixty-four R bits are a reference to a list
element. The associated object reference of this object points to another object. The
class associated with a list element can be determined via a virtual machine trap
during code execution.

The three least significant bits of object references are reserved for use by the
garbage collector.

APPENDIX A. TAGS 132

A.12 Class Object

X X X X X X X X

63 0

0 0 1 0header

X X X X X 0 0 0

start end

1 0 0 0code pointer

...

+ ... + ...

...static vars

X X X X X 0 0 0

63 0

1 0 1 1super class

X X X X X 0 0 0

start + 63

1 0 0 0code block 128

... 0 0 0

+ ... + ...

1 0 0 0other blocks

Class

R R R R R 0 0 0

63 0

1 0 1 1

X X X X X X X X

63 0

0 0 1 0header

X X X X X 0 0 0

start end

1 0 0 0code pointer

...

+ ... + ...

...static vars

R R R R R 0 0 0

63 0

1 0 1 1super class

X X X X X 0 0 0

start + 63

1 0 0 0code block 128

... 0 0 0

+ ... + ...

1 0 0 0other blocks

Super Class

Class Reference

X X X X X X X X

63 0

0 0 1 0header

X X X X X 0 0 0

start + 63

1 0 0 0first method

X X X X X 0 0 0

+ ... end

1 0 0 0last method

X X X X X 0 0 0

63 0

1 0 0 0class VTABLE

X X X X X 0 0 0

start + 63

1 0 0 0code block 64

... 0 0 0

+ ... + ...

1 0 0 0other blocks

VTable

Figure A.12: Class Object Reference

This tag indicates that the associated sixty-four R bits are a reference to an object.
The associated object reference of this class points to its superclass. The class has a
code pointer that points to a vtable of methods associated with this class.

The three least significant bits of object references are reserved for use by the
garbage collector.

APPENDIX A. TAGS 133

A.13 Future Object

R R R R R 0 0 0

63 0

1 1 0 0

X X X X X X X X

63 0

0 0 1 0header

X X X X X X X X

63 0

X X X Xinst var 0

X X X X X X X X

63 0

X X X Xinst var 1

X X X X X 0 0 0

63 0

1 0 1 1assoc obj

X X X X X X X X

63 0

X X X Xinst var N

Object

X X X X X X X X

63 0

0 0 1 0header

X X X X X 0 0 0

start end

1 0 0 0code pointer

...

+ ... + ...

...static vars

X X X X X 0 0 0

63 0

1 0 1 1super class

X X X X X 0 0 0

start + 63

1 0 0 0code block 128

... 0 0 0

+ ... + ...

1 0 0 0other blocks

Class

Future Object Reference

X X X X X X X X

63 0

0 0 1 0header

X X X X X 0 0 0

start + 63

1 0 0 0first method

X X X X X 0 0 0

+ ... end

1 0 0 0last method

X X X X X 0 0 0

63 0

1 0 0 0class VTABLE

X X X X X 0 0 0

start + 63

1 0 0 0code block 64

... 0 0 0

+ ... + ...

1 0 0 0other blocks

VTable

Figure A.13: Future Object Reference

This tag indicates that the associated sixty-four R bits are a reference to a future
object, an object whose value has not yet been computed. The associated object
reference of this object points to an associated class and is valid. This object does
not have a code pointer.

The three least significant bits of object references are reserved for use by the
garbage collector.

APPENDIX A. TAGS 134

A.14 Future Object with Code

R R R R R 0 0 0

63 0

1 0 0 1

X X X X X X X X

63 0

0 0 1 0header

X X X X X 0 0 0

63 0

1 0 0 0inst var 0

X X X X X X X X

63 0

X X X Xinst var 1

X X X X X 0 0 0

63 0

1 0 1 1assoc obj

X X X X X X X X

63 0

X X X Xinst var N

Object

X X X X X X X X

63 0

0 0 1 0header

X X X X X 0 0 0

start end

1 0 0 0code pointer

...

+ ... + ...

...static vars

X X X X X 0 0 0

63 0

1 0 1 1super class

X X X X X 0 0 0

start + 63

1 0 0 0code block 128

... 0 0 0

+ ... + ...

1 0 0 0other blocks

Class

Future Object with Code Reference

X X X X X X X X

63 0

0 0 1 0header

X X X X X 0 0 0

start + 63

1 0 0 0first method

X X X X X 0 0 0

+ ... end

1 0 0 0last method

X X X X X 0 0 0

63 0

1 0 0 0class VTABLE

X X X X X 0 0 0

start + 63

1 0 0 0code block 64

... 0 0 0

+ ... + ...

1 0 0 0other blocks

VTable

Figure A.14: Future with Code Reference

This tag indicates that the associated sixty-four R bits are a reference to an object,
an object whose value has not yet been computed. The associated object reference of
this object points to an associated class. The object has a code pointer that points
to a vtable of methods associated with it. Both references are valid.

The three least significant bits of object references are reserved for use by the
garbage collector.

APPENDIX A. TAGS 135

A.15 Pointer

P P P P P P P P

63 0

1 1 1 0

X X X X X X X X

63 0

X X X Xcode heap

X X X X X X X X

63 0

X X X Xobjects heap

X X X X X X X X

63 0

X X X Xslack free

X X X X X X X X

63 0

X X X Xframes stack

Memory

Pointer

Figure A.15: Pointer Reference

This tag indicates that the associated sixty-four P bits are a reference to arbitrary
data. This pointer need not point to the beginning of an object, and may point to
memory with an arbitrary tag.

Since a pointer can point to byte-addressable memory, and since pointers do not
directly participate in garbage collection, there are no free bits in the pointer type.
All sixty-four bits are significant.

APPENDIX A. TAGS 136

A.16 Reserved

R R R R R R R R

63 0

1 1 1 1

Figure A.16: Reserved

This tag is reserved for future use for an additional reference type. Memory
locations should not be tagged using this value.

Appendix B

Opcodes

This appendix section lists the internal details of the 45 pre-defined opcodes available
to the ++VM. This section gives a bit-by-bit description of each opcode, specifying
the kinds of operations performed, the number of words necessary to represent these
instructions, and the types of informational attributes available to each opcode. For
a more general description of opcode behavior, see Chapter 8.

How To Read This Section

Title The opcode title. This also contains the three-letter shorthand abbreviation
for the opcode.

Figure A picture of how the opcode is laid out in memory. The upper byte of
word zero specifies the opcode number. All other white boxes specify required
attributes, and gray boxes specify required attributes.

Description A brief summary of the operation that the opcode performs.

Required Attributes A list of attributes which all virtual machine implementa-
tions must recognize.

Informational Attributes A list of attributes which can be ignored by some virtual
machine implementations but which can provide additional runtime information
about the opcode.

Extension Words The number of additional instruction words needed by the op-
code.

137

APPENDIX B. OPCODES 138

Exceptions A list of exceptions which may be thrown during the execution of this
opcode.

Programming Notes Information about how to use this opcode.

APPENDIX B. OPCODES 139

B.1 ILLEGAL INSTRUCTION [ILL]

0 0 0 0 0 0 0 0 IGN IGN IGN IGN IGN IGN IGN IGN

15 0

word 0

Figure B.1: Illegal Instruction

Description

This opcode is the illegal instruction, and should be executed if the virtual machine
enters an inconsistent state. When executed, it will cause the virtual machine to
throw an IllegalInstructionError. As an error, it is uncatchable and will cause the
virtual machine to exit.

Attributes

The attribute byte of this instruction is ignored.

IGN The IGN bit is ignored.

Exceptions

Execution of this instruction can result in the following exceptions:

IllegalInstructionError Always thrown

Programming Notes

Programmers will be unlikely to explicitly use the illegal instruction in their code. It
is put in place in case the virtual machine fails to correctly interpret an opcode and
gets out of synch with the intended code or executes small data.

APPENDIX B. OPCODES 140

B.2 STACK OPERATIONS [STK]

0 0 0 0 0 0 0 1 STK RES C C C N N N

15 0

word 0

Figure B.2: Stack Operations

Description

This opcode performs one of eight stack operations. As of this writing, only four
of the eight operations are defined: element duplication, element popping, element
swapping, and element reversal. Stack instructions manipulate values on the top of
the stack and do not depend upon tag information.

DUP The DUP instruction, NNN = 000, performs stack element duplication. The
count amount specifies the number of duplication operations to perform.

POP The POP instruction, NNN = 001, performs stack popping. The count amount
specifies the number of operations to perform.

SWP The SWP instruction, NNN = 010, performs stack element swapping. The
count amount specifies the stack pointer offset of the element with which the
top of the stack should be swapped.

REV The REV instruction, NNN = 011, performs stack element reversal. The count
amount specifies the stack pointer offset of the element that will become the
head of the stack; all items above it on the stack are popped off and placed
back on the stack in reverse order.

RES The RES instruction, NNN = 1XX, is reserved for future extensions to the
virtual machine.

Required Attributes

This instruction has two required attributes. The NNN attributes on the first in-
struction word specify the type of operation to perform. The CCC bits on the first
instruction word specify the number of times to perform the operation, less one.

APPENDIX B. OPCODES 141

If NN is 000, then the virtual machine performs a DUP. If NN is 001, then a
POP is performed. If NN is 001, then a swap is performed. If NN is 011, then a
REV is performed. The remaining values of NNN instructions are reserved for future
extensions to the virtual machine and should not be used.

The CCC bits specify the number of times the instruction should be repeated or
the number of elements to be used in the operation, depending upon the context.

Informational Attributes

Two bits are available for informational attributes.

STK The STK bit on the first instruction word contains information about whether
the stack is likely to be manipulated frequently. If STK is clear, then no in-
formation is known about stack manipulation and the virtual machine should
assume that the stack will not be manipulated very often. If STK is set, then
the stack will be manipulated frequently.

RES The remaining bit on the first instruction word is reserved for future extensions.

Extension Words

None, though future extensions may set the extension bit and use an additional
extension word for attributes.

Exceptions

Execution of this instruction can result in the following exceptions.

EmptyStackException If insufficient stack values are available

APPENDIX B. OPCODES 142

B.3 ADDITION [ADD]

0 0 0 0 0 0 1 0 N N S S S D D D

15 0

word 0

Figure B.3: Addition Instruction

Description

This opcode adds two data values. This operation is only defined on data registers.
The source data register is added to the destination data register and the resulting
value is stored in the destination data register. The size of the operation is determined
by the tag on the source and destination.

Required Attributes

All of the bits in the attribute byte are required. The DDD bits on the first instruction
word indicate the destination register. The five remaining bits on the first instruction
word specify the opcode source.

If NN is 00, the three SSS bits indicate a source register. If NN is 01, the three
SSS bits are a small signed constant between -4 and +3. If NN is 10, the SSS bits
are an index to one of the first eight entries in the class’s constant pool. If NN is 11,
then the SSS bits signify that the source is one of eight special cases.

In the case where NN is 11, if SSS is 000, then one extension word holds a ten-bit
index to the source value in the constant pool. If SSS is 001, then the source value
is found directly in one subsequent extension word. If S is 010, then the source value
is found directly in two extension words, with the most significant word first. If SSS
is 011, then the source value is found directly in four extension words. If SSS is 100,
then the source is located at an offset from the this class pointer, an the offset is held
in one extension word. If SSS is 101, then the source is located at an offset from the
this class pointer, and the offset is held in one extension word. If SSS is 110, then the
source is the top value of the stack. The SSS value 111, where NN is 11, is reserved
for future use in the virtual machine and should not be used.

APPENDIX B. OPCODES 143

Extension Words

One, two or four extension words will be necessary if specified as a source location.
The standard opcode does not need additional extension words.

Exceptions

Execution of this instruction can result in the following exceptions.

TagException If the tags on the two values are not equal

APPENDIX B. OPCODES 144

B.4 SUBTRACTION [SUB]

0 0 0 0 0 0 1 1 N N S S S D D D

15 0

word 0

Figure B.4: Subtraction Instruction

Description

This opcode subtracts one data value from another. This operation is only defined
on data registers. The source data register is subtracted from the destination register
and the resulting value is stored in the destination data register. The size of the
operation is determined by the tag on the source and destination.

Required Attributes

All of the bits in the attribute byte are required. The DDD bits on the first instruction
word indicate the destination register. The five remaining bits on the first instruction
word specify the opcode source.

If NN is 00, the three SSS bits indicate a source register. If NN is 01, the three
SSS bits are a small signed constant between -4 and +3. If NN is 10, the SSS bits
are an index to one of the first eight entries in the class’s constant pool. If NN is 11,
then the SSS bits signify that the source is one of eight special cases.

In the case where NN is 11, if SSS is 000, then one extension word holds a ten-bit
index to the source value in the constant pool. If SSS is 001, then the source value
is found directly in one subsequent extension word. If S is 010, then the source value
is found directly in two extension words, with the most significant word first. If SSS
is 011, then the source value is found directly in four extension words. If SSS is 100,
then the source is located at an offset from the this class pointer, an the offset is held
in one extension word. If SSS is 101, then the source is located at an offset from the
this class pointer, and the offset is held in one extension word. If SSS is 110, then the
source is the top value of the stack. The SSS value 111, where NN is 11, is reserved
for future use in the virtual machine and should not be used.

APPENDIX B. OPCODES 145

Extension Words

One, two or four extension words will be necessary if specified as a source location.
The standard opcode does not need additional extension words.

Exceptions

Execution of this instruction can result in the following exceptions.

TagException If the tags on the two values are not equal

APPENDIX B. OPCODES 146

B.5 MULTIPLICATION [MUL]

0 0 0 0 0 1 0 0 N N S S S D D D

15 0

word 0

Figure B.5: Multiplication Instruction

Description

This opcode adds multiplies two data values. This operation is only defined on data
registers. The source data register is multiplied with the destination register and the
resulting value is stored in the destination data register. The size of the operation is
determined by the tag on the source and destination.

Required Attributes

All of the bits in the attribute byte are required. The DDD bits on the first instruction
word indicate the destination register. The five remaining bits on the first instruction
word specify the opcode source.

If NN is 00, the three SSS bits indicate a source register. If NN is 01, the three
SSS bits are a small signed constant between -4 and +3. If NN is 10, the SSS bits
are an index to one of the first eight entries in the class’s constant pool. If NN is 11,
then the SSS bits signify that the source is one of eight special cases.

In the case where NN is 11, if SSS is 000, then one extension word holds a ten-bit
index to the source value in the constant pool. If SSS is 001, then the source value
is found directly in one subsequent extension word. If S is 010, then the source value
is found directly in two extension words, with the most significant word first. If SSS
is 011, then the source value is found directly in four extension words. If SSS is 100,
then the source is located at an offset from the this class pointer, an the offset is held
in one extension word. If SSS is 101, then the source is located at an offset from the
this class pointer, and the offset is held in one extension word. If SSS is 110, then the
source is the top value of the stack. The SSS value 111, where NN is 11, is reserved
for future use in the virtual machine and should not be used.

APPENDIX B. OPCODES 147

Extension Words

One, two or four extension words will be necessary if specified as a source location.
The standard opcode does not need additional extension words.

Exceptions

Execution of this instruction can result in the following exceptions.

TagException If the tags on the two values are not equal

APPENDIX B. OPCODES 148

B.6 DIVISION [DIV]

0 0 0 0 0 1 0 1 N N S S S D D D

15 0

word 0

Figure B.6: Division Instruction

Description

This opcode divides one data value by another. This operation is only defined on
data registers. The destination data register is divided by the source register and the
resulting value is stored in the destination data register. The size of the operation is
determined by the tag on the source and destination.

Required Attributes

All of the bits in the attribute byte are required. The DDD bits on the first instruction
word indicate the destination register. The five remaining bits on the first instruction
word specify the opcode source.

If NN is 00, the three SSS bits indicate a source register. If NN is 01, the three
SSS bits are a small signed constant between -4 and +3. If NN is 10, the SSS bits
are an index to one of the first eight entries in the class’s constant pool. If NN is 11,
then the SSS bits signify that the source is one of eight special cases.

In the case where NN is 11, if SSS is 000, then one extension word holds a ten-bit
index to the source value in the constant pool. If SSS is 001, then the source value
is found directly in one subsequent extension word. If S is 010, then the source value
is found directly in two extension words, with the most significant word first. If SSS
is 011, then the source value is found directly in four extension words. If SSS is 100,
then the source is located at an offset from the this class pointer, an the offset is held
in one extension word. If SSS is 101, then the source is located at an offset from the
this class pointer, and the offset is held in one extension word. If SSS is 110, then the
source is the top value of the stack. The SSS value 111, where NN is 11, is reserved
for future use in the virtual machine and should not be used.

APPENDIX B. OPCODES 149

Extension Words

One, two or four extension words will be necessary if specified as a source location.
The standard opcode does not need additional extension words.

Exceptions

Execution of this instruction can result in the following exceptions.

TagException If the tags on the two values are not equal

DivideByZeroException If the divisor is zero

APPENDIX B. OPCODES 150

B.7 MODULUS [MOD]

0 0 0 0 0 1 1 0 N N S S S D D D

15 0

word 0

Figure B.7: Modular Arithmetic Instruction

Description

This opcode performs modular arithmetic by dividing one data value by another
and keeping the remainder. This operation is only defined on data registers. The
destination data register is divided by the source data register and the remainder
from the division is stored back in the destination data register. The tag of the
resulting value will be determined by the tag on the source and destination registers.

Required Attributes

All of the bits in the attribute byte are required. The DDD bits on the first instruction
word indicate the destination register. The five remaining bits on the first instruction
word specify the opcode source.

If NN is 00, the three SSS bits indicate a source register. If NN is 01, the three
SSS bits are a small signed constant between -4 and +3. If NN is 10, the SSS bits
are an index to one of the first eight entries in the class’s constant pool. If NN is 11,
then the SSS bits signify that the source is one of eight special cases.

In the case where NN is 11, if SSS is 000, then one extension word holds a ten-bit
index to the source value in the constant pool. If SSS is 001, then the source value
is found directly in one subsequent extension word. If S is 010, then the source value
is found directly in two extension words, with the most significant word first. If SSS
is 011, then the source value is found directly in four extension words. If SSS is 100,
then the source is located at an offset from the this class pointer, an the offset is held
in one extension word. If SSS is 101, then the source is located at an offset from the
this class pointer, and the offset is held in one extension word. If SSS is 110, then the
source is the top value of the stack. The SSS value 111, where NN is 11, is reserved
for future use in the virtual machine and should not be used.

APPENDIX B. OPCODES 151

Extension Words

One, two or four extension words will be necessary if specified as a source location.
The standard opcode does not need additional extension words.

Exceptions

Execution of this instruction can result in the following exceptions.

TagException If the tags on the two values are not equal

DivideByZeroException If the divisor is zero

APPENDIX B. OPCODES 152

B.8 NUMERIC INNER PRODUCT [NPR]

0 0 0 0 0 1 1 1 S1 S1 S0 S0 S0 D D D

15 0

word 0

Figure B.8: Numeric Inner Product Instruction

Description

This opcode multiplies two numbers and adds the resulting value to a third. The
numeric inner product is only defined on data registers. The two source operands
are multiplied together, and the subsequent result is is added to the destination
register. The size of the operation performed is determined by the tag of the source
and destination; in order for the operation to succeed, both of the sources and the
destination must have the same tag.

Required Attributes

All of the bits in the attribute byte are required. The DDD bits on the first instruction
word indicate the destination register. The source S0 specifies any one of the eight
data registers, while the source S1 specifies one of the four low data registers (%d0
to %d3).

Exceptions

Execution of this instruction can result in the following exceptions.

TagException If the tags of all three operands are not equal

APPENDIX B. OPCODES 153

B.9 LOGICAL SHIFT RIGHT [LSR]

0 0 0 0 1 0 0 0 N N S S S D D D

15 0

word 0

Figure B.9: Logical Shift Right Instruction

Description

This opcode performs a logical shift right operation. This operation is only defined
on data registers. The destination data register is shifted right by the number of
bits specified in the source data register and the resulting value is stored back in the
destination data register. The bits inserted to the left of the shifted number are zeros.
The size of the operation will be determined by the tag of the destination register.

Required Attributes

All of the bits in the attribute byte are required. The DDD bits on the first instruction
word indicate the destination register. The five remaining bits on the first instruction
word specify the opcode source.

If NN is 00, the three SSS bits indicate a source register. If NN is 01, the three
SSS bits are a small signed constant between -4 and +3. If NN is 10, the SSS bits
are an index to one of the first eight entries in the class’s constant pool. If NN is 11,
then the SSS bits signify that the source is one of eight special cases.

In the case where NN is 11, if SSS is 000, then one extension word holds a ten-bit
index to the source value in the constant pool. If SSS is 001, then the source value
is found directly in one subsequent extension word. If S is 010, then the source value
is found directly in two extension words, with the most significant word first. If SSS
is 011, then the source value is found directly in four extension words. If SSS is 100,
then the source is located at an offset from the this class pointer, an the offset is held
in one extension word. If SSS is 101, then the source is located at an offset from the
this class pointer, and the offset is held in one extension word. If SSS is 110, then the
source is the top value of the stack. The SSS value 111, where NN is 11, is reserved
for future use in the virtual machine and should not be used.

APPENDIX B. OPCODES 154

Extension Words

One, two or four extension words will be necessary if specified as a source location.
The standard opcode does not need additional extension words.

Exceptions

Execution of this instruction can result in the following exceptions.

ShiftException If the shift amount is negative or malformed.

APPENDIX B. OPCODES 155

B.10 ARITHMETIC SHIFT RIGHT [LSR]

0 0 0 0 1 0 0 1 N N S S S D D D

15 0

word 0

Figure B.10: Arithmetic Shift Right Instruction

Description

This opcode performs an arithmetic shift right operation. This operation is only
defined on data registers. The destination data register is shifted right by the number
of bits specified in the source data register and the resulting value is stored back in
the destination data register. The bits inserted to the left of the shifted number have
the same bit value as the sign bit of the original operand. The size of the operation
will be determined by the tag of the destination register.

Required Attributes

All of the bits in the attribute byte are required. The DDD bits on the first instruction
word indicate the destination register. The five remaining bits on the first instruction
word specify the opcode source.

If NN is 00, the three SSS bits indicate a source register. If NN is 01, the three
SSS bits are a small signed constant between -4 and +3. If NN is 10, the SSS bits
are an index to one of the first eight entries in the class’s constant pool. If NN is 11,
then the SSS bits signify that the source is one of eight special cases.

In the case where NN is 11, if SSS is 000, then one extension word holds a ten-bit
index to the source value in the constant pool. If SSS is 001, then the source value
is found directly in one subsequent extension word. If S is 010, then the source value
is found directly in two extension words, with the most significant word first. If SSS
is 011, then the source value is found directly in four extension words. If SSS is 100,
then the source is located at an offset from the this class pointer, an the offset is held
in one extension word. If SSS is 101, then the source is located at an offset from the
this class pointer, and the offset is held in one extension word. If SSS is 110, then the
source is the top value of the stack. The SSS value 111, where NN is 11, is reserved
for future use in the virtual machine and should not be used.

APPENDIX B. OPCODES 156

Extension Words

One, two or four extension words will be necessary if specified as a source location.
The standard opcode does not need additional extension words.

Exceptions

Execution of this instruction can result in the following exceptions.

ShiftException If the shift amount is negative or malformed.

Programming Notes

The Arithmetic Shift Left [ASL] operation is a synonym for the Logical Shift Left
operation.

APPENDIX B. OPCODES 157

B.11 LOGICAL SHIFT LEFT [LSL]

0 0 0 0 1 0 1 0 N N S S S D D D

15 0

word 0

Figure B.11: Logical Shift Left Instruction

Description

This opcode performs a logical shift left operation. This operation is only defined
on data registers. The destination data register is shifted left by the number of bits
specified in the source data register and the resulting value is stored back in the
destination data register. The bits inserted to the right of the shifted number are
zeros. The size of the operation will be determined by the tag of the destination
register.

Required Attributes

All of the bits in the attribute byte are required. The DDD bits on the first instruction
word indicate the destination register. The five remaining bits on the first instruction
word specify the opcode source.

If NN is 00, the three SSS bits indicate a source register. If NN is 01, the three
SSS bits are a small signed constant between -4 and +3. If NN is 10, the SSS bits
are an index to one of the first eight entries in the class’s constant pool. If NN is 11,
then the SSS bits signify that the source is one of eight special cases.

In the case where NN is 11, if SSS is 000, then one extension word holds a ten-bit
index to the source value in the constant pool. If SSS is 001, then the source value
is found directly in one subsequent extension word. If S is 010, then the source value
is found directly in two extension words, with the most significant word first. If SSS
is 011, then the source value is found directly in four extension words. If SSS is 100,
then the source is located at an offset from the this class pointer, an the offset is held
in one extension word. If SSS is 101, then the source is located at an offset from the
this class pointer, and the offset is held in one extension word. If SSS is 110, then the
source is the top value of the stack. The SSS value 111, where NN is 11, is reserved
for future use in the virtual machine and should not be used.

APPENDIX B. OPCODES 158

Extension Words

One, two or four extension words will be necessary if specified as a source location.
The standard opcode does not need additional extension words.

Exceptions

Execution of this instruction can result in the following exceptions.

ShiftException If the shift amount is negative or malformed.

APPENDIX B. OPCODES 159

B.12 BIT OPERATIONS [BOP]

0 0 0 0 1 0 1 1 N N S S S D D D

15 0

word 0

Figure B.12: Bit Operation Instruction

Description

This opcode performs various manipulations to bit fields. Bit field manipulation
operations are only defined for data registers. The tag of the resulting value will be
determined by the tag on the source and destination registers.

CLR The CLR instruction, NN = 00, performs a bit clearing operation. The bits
specified by the source register are set to zero in the destination register.

SET The SET instruction, NN = 01, performs a bit setting operation. The bits
specified by the source register are set to one in the destination register.

TGL The TGL instruction, NN = 10, performs a bit toggling operation. The bits
specified by the source register are toggled in the destination register; if the bit
was a zero it is toggled to a one, and if a one it is toggled to a zero.

RES The RES instruction, NN = 11, is reserved for future extensions to the virtual
machine.

Required Attributes

All of the bits in the attribute byte are required. The DDD bits on the first instruction
word indicate the destination register. The five remaining bits on the first instruction
word specify the opcode source.

If NN is 00, then the bits that SSS specifies should be cleared. If NN is 01, the
bits that SSS specifies should be set. If NN is 10, the bits that SSS specifies should
be toggled. The NN value of 11 is reserved and should not be used.

APPENDIX B. OPCODES 160

Exceptions

Execution of this instruction can result in the following exceptions.

TagException If the tags of both operands are not equal

APPENDIX B. OPCODES 161

B.13 SET UNION [UNN]

0 0 0 0 1 1 0 0 N N S S S D D D

15 0

word 0

Figure B.13: Set Union Instruction

Description

This opcode performs a set union operation by taking the bitwise or of two data
values. This operation is only defined on data registers. The destination data register
is ored with the source data register and the resulting value is stored back in the
destination data register. The tag of the resulting value will be determined by the
tag on the source and destination registers.

Required Attributes

All of the bits in the attribute byte are required. The DDD bits on the first instruction
word indicate the destination register. The five remaining bits on the first instruction
word specify the opcode source.

If NN is 00, the three SSS bits indicate a source register. If NN is 01, the three
SSS bits are a small signed constant between -4 and +3. If NN is 10, the SSS bits
are an index to one of the first eight entries in the class’s constant pool. If NN is 11,
then the SSS bits signify that the source is one of eight special cases.

In the case where NN is 11, if SSS is 000, then one extension word holds a ten-bit
index to the source value in the constant pool. If SSS is 001, then the source value
is found directly in one subsequent extension word. If S is 010, then the source value
is found directly in two extension words, with the most significant word first. If SSS
is 011, then the source value is found directly in four extension words. If SSS is 100,
then the source is located at an offset from the this class pointer, an the offset is held
in one extension word. If SSS is 101, then the source is located at an offset from the
this class pointer, and the offset is held in one extension word. If SSS is 110, then the
source is the top value of the stack. The SSS value 111, where NN is 11, is reserved
for future use in the virtual machine and should not be used.

APPENDIX B. OPCODES 162

Extension Words

One, two or four extension words will be necessary if specified as a source location.
The standard opcode does not need additional extension words.

Exceptions

Execution of this instruction can result in the following exceptions.

TagException If the tags on the two values are not equal

APPENDIX B. OPCODES 163

B.14 SET INTERSECTION [NTR]

0 0 0 0 1 1 0 1 N N S S S D D D

15 0

word 0

Figure B.14: Set Intersection Instruction

Description

This opcode performs a set intersection operation by taking the bitwise and of two
data values. This operation is only defined on data registers. The destination data
register is anded to the source data register and the resulting value is stored back in
the destination data register. The tag of the resulting value will be determined by
the tag on the source and destination registers.

Required Attributes

All of the bits in the attribute byte are required. The DDD bits on the first instruction
word indicate the destination register. The five remaining bits on the first instruction
word specify the opcode source.

If NN is 00, the three SSS bits indicate a source register. If NN is 01, the three
SSS bits are a small signed constant between -4 and +3. If NN is 10, the SSS bits
are an index to one of the first eight entries in the class’s constant pool. If NN is 11,
then the SSS bits signify that the source is one of eight special cases.

In the case where NN is 11, if SSS is 000, then one extension word holds a ten-bit
index to the source value in the constant pool. If SSS is 001, then the source value
is found directly in one subsequent extension word. If S is 010, then the source value
is found directly in two extension words, with the most significant word first. If SSS
is 011, then the source value is found directly in four extension words. If SSS is 100,
then the source is located at an offset from the this class pointer, an the offset is held
in one extension word. If SSS is 101, then the source is located at an offset from the
this class pointer, and the offset is held in one extension word. If SSS is 110, then the
source is the top value of the stack. The SSS value 111, where NN is 11, is reserved
for future use in the virtual machine and should not be used.

APPENDIX B. OPCODES 164

Extension Words

One, two or four extension words will be necessary if specified as a source location.
The standard opcode does not need additional extension words.

Exceptions

Execution of this instruction can result in the following exceptions.

TagException If the tags on the two values are not equal

APPENDIX B. OPCODES 165

B.15 SET EXCLUSIVE OR [XOR]

0 0 0 0 1 1 1 0 N N S S S D D D

15 0

word 0

Figure B.15: Set Exclusive Or Instruction

Description

This opcode performs a set exclusive or operation by taking the bitwise exclusive or

of two data values. This operation is only defined on data registers. The destination
data register is exclusive ored with the source data register and the resulting value
is stored back in the destination data register. The tag of the resulting value will be
determined by the tag on the source and destination registers.

Required Attributes

All of the bits in the attribute byte are required. The DDD bits on the first instruction
word indicate the destination register. The five remaining bits on the first instruction
word specify the opcode source.

If NN is 00, the three SSS bits indicate a source register. If NN is 01, the three
SSS bits are a small signed constant between -4 and +3. If NN is 10, the SSS bits
are an index to one of the first eight entries in the class’s constant pool. If NN is 11,
then the SSS bits signify that the source is one of eight special cases.

In the case where NN is 11, if SSS is 000, then one extension word holds a ten-bit
index to the source value in the constant pool. If SSS is 001, then the source value
is found directly in one subsequent extension word. If S is 010, then the source value
is found directly in two extension words, with the most significant word first. If SSS
is 011, then the source value is found directly in four extension words. If SSS is 100,
then the source is located at an offset from the this class pointer, an the offset is held
in one extension word. If SSS is 101, then the source is located at an offset from the
this class pointer, and the offset is held in one extension word. If SSS is 110, then the
source is the top value of the stack. The SSS value 111, where NN is 11, is reserved
for future use in the virtual machine and should not be used.

APPENDIX B. OPCODES 166

Extension Words

One, two or four extension words will be necessary if specified as a source location.
The standard opcode does not need additional extension words.

Exceptions

Execution of this instruction can result in the following exceptions.

TagException If the tags on the two values are not equal

APPENDIX B. OPCODES 167

B.16 SET INNER PRODUCT [SPR]

0 0 0 0 1 1 1 1 S1 S1 S0 S0 S0 D D D

15 0

word 0

Figure B.16: Set Inner Product Instruction

Description

This opcode performs a set inner product instruction, anding two operands together
and oring that result with a third value. The set inner product is only defined on
data registers. A bitwise and of the two source operands is performed, then a bitwise
or is performed with the intermediate result and a destination register. The size of
the operation performed is determined by the tag of the source and destination.

Required Attributes

All of the bits in the attribute byte are required. The DDD bits on the first instruction
word indicate the destination register. The source S0 specifies any one of the eight
data registers, while the source S1 specifies one of the four low data registers (%d0
to %d3).

Exceptions

Execution of this instruction can result in the following exceptions.

TagException If the tags of all three operands are not equal

APPENDIX B. OPCODES 168

B.17 CONVERT [CON]

0 0 0 1 0 0 0 0 N N G G G D D D

15 0

word 0

Figure B.17: Convert Instruction

Description

This opcode retags a value to the specified data type. The source and destination
registers must have the same register number, though it is possible for either the
source or destination to be a value in a reference register. Some conversions may lose
precision.

Required Attributes

All bits in the attribute word are required. The DDD bits of the first instruction word
specify the (source and) destination register. The GGG bits specify the tag to which
the source should be converted. The NN bits specify whether the registers should be
data or reference registers.

If NN is 00, both operands should come from data registers. If NN is 01, the
source is a data register and the destination is a reference register. If NN is 10, the
source is a reference register and the destination is a data register. If NN is 11, the
source and destination registers are both reference registers.

Execution of this instruction will not result in exceptions.

APPENDIX B. OPCODES 169

B.18 CAST [CST]

0 0 0 1 0 0 0 1 N N S S S D D D

15 0

word 0

I I I I I I I I I I G G G RUN NTF PRD

15 0

word 1

Figure B.18: Cast Instruction

Description

This opcode casts a value to an instance of a specified class. The destination register
is a reference register; the source register is either a data register or a reference register
depending upon an attribute bit. The result is tagged with the same tag type as the
source if the source is an reference; the result is tagged as a standard object if the
source is a data value.

Required Attributes

All bits in the attribute word are required attributes. The DDD bits specify the
destination register. The SSS bits specify the source register. The NN bits specify
the type of reference to create.

Thirteen bits on the next extension word are used for required attributes. Ten
bits of the second instruction word specify an index in the constant pool, the index
of the class to which the value should be cast. The GGG bits specify the reference
type to which the object should be converted.

If NN is 00, both operands should come from data registers. If NN is 01, the
source is a data register and the destination is a reference register. If NN is 10, the
source is a reference register and the destination is a data register. If is 11, the source
and destination registers are both reference registers.

If GGG is 000, the value should be converted to an object. If GGG is 001, the
value should be converted to an object with code. If GGG is 010, the value should
be converted to a list element. If GGG is 011, the value should be converted to a

APPENDIX B. OPCODES 170

class. If GGG is 100, the value should be converted to a future object. If GGG is
101, the value should be converted to a future object with code. If GGG is 110, the
value should be converted to a pointer. The GGG value of 111 is reserved for future
extensions to the type system

Informational Attributes

Three bits are available for informational attributes.

RUN The RUN bit contains information about whether a runtime check will be
necessary to determine that this cast must be performed. If RUN is clear, the
virtual machine defaults and the runtime test is performed. If RUN is set,
however, it will be assumed that the cast always succeeds and no runtime tests
will be performed.

NTF The NTF bits contain information about whether to check for implemented
interfaces before implemented classes when determining whether the cast suc-
ceeds. If NTF is clear, then superclasses are checked before interfaces. If NTF
is set, then implemented interfaces are checked before superclasses.

PRD The PRD bit contains prediction information about the cast. If PRD is clear,
then the cast is likely to succeed and the instruction steam should contain the
next opcode. If PRD is set, then the cast is likely to fail and the instruction
stream should prepare to throw an exception.

Extension Words

One extension word holds the opcode information.

Exceptions

Execution of this instruction can result in the following exceptions

ClassCastException A ClassCastException is thrown if the cast fails

Programming Notes

This instruction is dangerous and potentially difficult to use.

APPENDIX B. OPCODES 171

B.19 ONE OPERAND INSTRUCTIONS [OOP]

0 0 0 1 0 0 1 0 N N N N N D D D

15 0

word 0

Figure B.19: One Operand Instruction

Description

This opcode executes one of various one-operation instructions. These operations are
all alike in the fact that they all use only a single operand, meaning that no source
register need be specified. Currently, seven one-op instructions are defined.

NOT The NOT instruction, NNNNN = 00000, performs one’s complement negation.
The destination register is a data register.

NEG The NEG instruction, NNNNN = 00001, performs two’s complement negation.
The destination register is a data register.

ILB The ILB instruction, NNNNN = 00010, computes the index of the leftmost set
bit. This value is approximately equal to the number taken log base 2. The
destination register is a data register.

IRB The IRB instruction, NNNNN = 00011, computes the index of the rightmost
set bit. The destination register is a data register.

SZE The SZE instruction, NNNNN = 00101, returns the size of an object from that
object’s header field. The destination is a reference register that holds an object;
the register will be re-tagged as a short as a result of computing this instruction

CNT The CNT instruction, NNNNN = 00110, computes the number of bits that are
set. This value is an approximation count. The destination register is a data
register.

RES The RES instructions, all other values of NNNNN, are reserved for future
extensions to the virtual machine.

APPENDIX B. OPCODES 172

Required Attributes

All of the bits in the attribute byte are used. The DDD bits specify the number of a
(source and) destination register. The NNNNN bits specify the operation to perform.

If NNNNN is 000, perform a NOT operation, as defined above. If NNNNN is 001,
perform a NEG operation. If NNNNN is 010, perform an ILB operation. If NNNNN
is 011, perform an IRB operation. If NNNNN is 100, perform a FLD operation.
If NNNNN is 101, perform a TRP operation. If NNNNN is CNT, perform a CNT
operation. All other values of NNNNN are reserved and should not be used

APPENDIX B. OPCODES 173

B.20 MOVE BETWEEN REGISTERS [MRG]

0 0 0 1 0 0 1 1 N N S S S D D D

15 0

word 0

Figure B.20: Move Between Register Instruction

Description

This opcode moves a value between two registers or between a register and the stack.
The source value is moved to the destination register as appropriate. Movement
operations can occur between two data registers, between two reference registers, or
from a data register to a reference register. When values are moved between two data
or two reference registers, the data tag is preserved; when an reference is converted
to a data value, any reference is silently converted to a long.

Required Attributes

All of the bits in the attribute byte are required. The DDD bits specify the number of
the destination register. The five remaining bits on the first instruction word specify
the opcode source.

If NN is 00, both the source and the destination are data registers and SSS is a
data register. If NN is 01, the source is a special value as explained below. If NN
is 10, the source is a reference register and the the destination is a data register and
SSS is a reference register. If NN is 11, the source and destination are both reference
registers and SSS is an reference register.

If NN is 01, then the SSS bits do not specify a register. Instead, if SSS is 000,
then the top of the stack is the source and a the destination is a data register. If
SSS is 001, then the top of the stack is the source and the destination is a reference
register. If SSS is 010, then source is an ultra from the stack and the destination is
the lower of two data registers. If SSS is 011, then one extension word holds an index
into a constant pool and the destination is a data register. If SSS is 100, the source
is the data register specified by the DDD field and the destination is the stack. If
SSS is 101, the source is the reference register specified by the DDD field and the
destination is the stack. If SSS is 110, then the source is the ultra specified in register

APPENDIX B. OPCODES 174

DDD and the source is the stack. If SSS is 111, one extension word holds an index
into the constant pool and the destination is a reference register.

Extension Words

One extension word may be needed to hold an index into the constant pool.

Programming Notes

This instruction can be used to access constants in the constant pool and store them
into registers.

APPENDIX B. OPCODES 175

B.21 LOAD FROM OBJECT OFFSET [LOB]

0 0 0 1 0 1 0 0 N N S S S D D D

15 0

word 0

I I I I I I I I I I FRQ FRQ R R R R

15 0

word 1

Figure B.21: Load from Object Instruction

Description

This opcode moves a value from a specified object offset into the specified register.
The memory offset is computed as an offset from a base object. The tag of the
specified memory location will determine whether a data or reference register is used
as the destination.

Required Attributes

All of the bits in the attribute byte are used. The DDD bits specify the number of a
destination register. The five remaining bits on the first instruction word specify the
opcode source.

If NN is 00, then the base register is the %to register and the offset SSS is an
eight-bit offset index. If NN is 01, then the base register is the %tc register and the
offset SSS is an eight-bit offset index. If NN is 10, then the base register is the current
frame and the offset SSS is an eight-bit offset index. If NN is 11, then an additional
extension word is needed to handle a special case and SSS is ignored.

If NN is 11, the first ten bits of the next extension word form an index to the
specified object field and the RRRR bits of the word specify the location of the base
register. If the last RRRR bits are of the pattern 0RRR, the base register is the
reference register RRR. The pattern 1000 specifies the %to reference, 1001 specifies
the %tc reference, and all other patterns are reserved for future extensions to the
virtual machine.

APPENDIX B. OPCODES 176

Informational Attributes

If the instruction uses a single word, then there are no informational attributes; if an
additional word is used, however, there are two informational bits available.

FRQ The two FRQ bits contain information about how frequently the memory lo-
cation will be accessed in the future; the system may be able to use this in-
formation to cache more efficiently. If FRQ is 00, then no access information
information is known. If FRQ is 01, then the object will not be accessed fre-
quently. If FRQ is 10, then the object will be accessed relatively frequently in
the near future. If FRQ is 11, then the object should be kept as long as possible
in the cache.

Extension Words

One additional extension word can be used to hold the base offset register as well as
additional attribute information.

APPENDIX B. OPCODES 177

B.22 STORE TO OBJECT OFFSET [SOB]

0 0 0 1 0 1 0 1 N N S S S D D D

15 0

word 0

I I I I I I I I I I FRQ FRQ R R R R

15 0

word 1

Figure B.22: Store to Object Instruction

Description

This opcode moves a value from a source register to a specified object offset. The
memory offset is computed as an offset from a base object. The tag of the specified
memory location will determine whether a data or reference register is used as the
destination.

Required Attributes

All of the bits in the attribute byte are used. The DDD bits specify the number of
a source register. The five remaining bits on the first instruction word specify the
opcode destination.

If NN is 00, then the base register is the %to register and the offset SSS is an
eight-bit offset index. If NN is 01, then the base register is the %tc register and the
offset SSS is an eight-bit offset index. If NN is 10, then the base register is the current
frame and the offset SSS is an eight-bit offset index. If NN is 11, then an additional
extension word is needed to handle a special case and SSS is ignored.

If NN is 11, the first ten bits of the next extension word form an index to the
specified object field and the RRRR bits of the word specify the location of the base
register. If the last RRRR bits are of the pattern 0RRR, the base register is the
reference register RRR. The pattern 1000 specifies the %to reference, 1001 specifies
the %tc reference, and all other patterns are reserved for future extensions to the
virtual machine.

APPENDIX B. OPCODES 178

Informational Attributes

If the instruction uses a single word, then there are no informational attributes; if an
additional word is used, however, there are two informational bits available.

FRQ The two FRQ bits contain information about how frequently the memory lo-
cation will be accessed in the future; the system may be able to use this in-
formation to cache more efficiently. If FRQ is 00, then no access information
information is known. If FRQ is 01, then the object will not be accessed fre-
quently. If FRQ is 10, then the object will be accessed relatively frequently in
the near future. If FRQ is 11, then the object should be kept as long as possible
in the cache.

Extension Words

One additional extension word can be used to hold the base offset register as well as
additional attribute information.

APPENDIX B. OPCODES 179

B.23 LOAD FROM POINTER OFFSET [LPT]

0 0 0 1 0 1 1 0 N N S S S D D D

15 0

word 0

I I I I I I I I I I FRQ FRQ R R R R

15 0

word 1

Figure B.23: Load from Pointer Instruction

Description

This opcode moves a value from a specified object offset into the specified register.
The memory offset, stored in a register, is computed as an offset from a base pointer.
The tag of the specified memory location will determine whether a data or reference
register is used as the destination.

Required Attributes

All of the bits in the attribute byte are used. The DDD bits specify the number of a
destination register. The five remaining bits on the first instruction word specify the
opcode source.

If NN is 00, then the base register is the %to register and the offset SSS is a data
register. If NN is 01, then the base register is the %tc register and the offset SSS is a
data register. If NN is 10, then the base register is the current frame and the offset
SSS is a data register. If NN is 11, then an additional extension word is needed to
handle a special case and SSS is ignored.

If NN is 11, the first ten bits of the next extension word form an index to the
specified object field and the RRRR bits of the word specify the location of the base
register. If the last RRRR bits are of the pattern 0RRR, the base register is the
reference register RRR. The pattern 1000 specifies the %to reference, 1001 specifies
the %tc reference, and all other patterns are reserved for future extensions to the
virtual machine.

APPENDIX B. OPCODES 180

Informational Attributes

If the instruction uses a single word, then there are no informational attributes; if an
additional word is used, however, there are two informational bits available.

FRQ The two FRQ bits contain information about how frequently the memory lo-
cation will be accessed in the future; the system may be able to use this in-
formation to cache more efficiently. If FRQ is 00, then no access information
information is known. If FRQ is 01, then the object will not be accessed fre-
quently. If FRQ is 10, then the object will be accessed relatively frequently in
the near future. If FRQ is 11, then the object should be kept as long as possible
in the cache.

Extension Words

One additional extension word can be used to hold the base offset register as well as
additional attribute information.

APPENDIX B. OPCODES 181

B.24 STORE TO POINTER OFFSET [SPT]

0 0 0 1 0 1 1 1 N N S S S D D D

15 0

word 0

I I I I I I I I I I FRQ FRQ R R R R

15 0

word 1

Figure B.24: Store to Pointer Instruction

Description

This opcode moves a value from a source register to a specified object offset. The
memory offset, stored in a pointer, is computed as an offset from a base pointer.
The tag of the specified memory location will determine whether a data or reference
register is used as the destination.

Required Attributes

All of the bits in the attribute byte are used. The DDD bits specify the number of
a source register. The five remaining bits on the first instruction word specify the
opcode destination.

If NN is 00, then the base register is the %to register and the offset SSS is a data
register. If NN is 01, then the base register is the %tc register and the offset SSS is a
data register. If NN is 10, then the base register is the frame pointer and the offset
SSS is a data register. If NN is 11, then an additional extension word is needed to
handle a special case and SSS is ignored.

If NN is 11, the first ten bits of the next extension word form an index to the
specified object field and the RRRR bits of the word specify the location of the base
register. If the last RRRR bits are of the pattern 0RRR, the base register is the
reference register RRR. The pattern 1000 specifies the %to reference, 1001 specifies
the %tc reference, and all other patterns are reserved for future extensions to the
virtual machine.

APPENDIX B. OPCODES 182

Informational Attributes

If the instruction uses a single word, then there are no informational attributes; if an
additional word is used, however, there are two informational bits available.

FRQ The two FRQ bits contain information about how frequently the memory lo-
cation will be accessed in the future; the system may be able to use this in-
formation to cache more efficiently. If FRQ is 00, then no access information
information is known. If FRQ is 01, then the object will not be accessed fre-
quently. If FRQ is 10, then the object will be accessed relatively frequently in
the near future. If FRQ is 11, then the object should be kept as long as possible
in the cache.

Extension Words

One additional extension word can be used to hold the base offset register as well as
additional attribute information.

APPENDIX B. OPCODES 183

B.25 PREPARE NEW OBJECT [NEW]

0 0 0 1 1 0 0 0 A A A A E D D D

15 0

word 0

I I I I I I I I I I TAG TAG TAG CSH CSH CSH

15 0

word 1

Figure B.25: Prepare New Object Instruction

Description

This opcode allocates space for a new object reference. Memory is prepared for
an instance of the class held at the specified constant pool index, and the memory
reference to the new object is placed in the destination reference register.

Required Attributes

All of the bits in the attribute byte are used for required attributes. The DDD
bits specify the destination reference register that will hold the pointer to the new
object. The E bit specifies whether the instruction has an additional word’s worth of
informational attributes. The N bit specifies whether an object or an array is being
created.

If N is 0, then a single object will be created. If N is 1, then the reference register
DDD contains the length of the array to initialize.

Ten bits of the second instruction word specify an index in the constant pool, the
index of the class to initialize. If an array is being created, this index is to the types
of elements that will be in the array. If a single object is being created, this specifies
the class of the object to create.

Informational Attributes

Six bits on the second extension word can be used to hold informational attributes.

APPENDIX B. OPCODES 184

PIN The two PIN bits contain information about object pinning; the system can
use this information to prevent the garbage collector from moving a particular
object so pointer operations can be performed. If PIN is 00, then no pinning
information is available. If PIN is 01, then the object should be pinned in place.
If PIN is 10, then the object should be pinned at the location specified by the
next four extension words. If PIN is 11, then the object should be created in
an unpinned fashion.

STK The STK bit contains information about whether the object shoud be allocated
on the stack. If STK is 0, no information about stack allocation is avaliable. If
STK is 1, then the object may be stack allocated.

TAG The three TAG bits indicate the tag that should be used when creating the
object. This attribute can be used to optimize for the creation of normal objects,
objects with code, futures, and pointers.

CSH The three CSH bits indicate another reference register with which the new
object will be frequently used. The virtual machine should move the object in
the destination register so that it does not create cache conflicts with the object
in this register.

Extension Words

If the additional word attribute is set, one additional extension word can be used to
hold more informational attributes. Four additional extension words may be needed
if the object is pinned.

Programming Notes

This instruction allocates space for a new object, but does not initialize it. The
resulting object should be initialized by calling the initializer method.

APPENDIX B. OPCODES 185

B.26 OBJECT ATTRIBUTE [ATR]

0 0 0 1 1 0 1 0 GEN GEN FRQ FRQ E D D D

15 0

word 0

RES RES RES RES RES GRB GRB NUL PIN PIN TAG TAG TAG CSH CSH CSH

15 0

word 1

Figure B.26: Object Attribute Instruction

Description

This opcode provides additional runtime information about an object that has already
been created. The object attribute instruction is only defined on values in a reference
registers.

Required Attributes

Four bits in the attribute byte are used for required attributes. The DDD bits specify
the destination reference register that will hold the pointer to the new object. The E
bit specifies whether the instruction has an additional word’s worth of informational
attributes.

Informational Attributes

Twenty bits can be used to hold informational attributes.

GEN The two GEN bits contain generational information about the object; the
system may be able to use this information to garbage collect more efficiently.
If GEN is 00, then no information is known. If GEN is 01, the object will die
and can be garbage collected very shortly in the future. If GEN is 10, the object
will not die in the near future. If GEN is 11, then the object will live for a very
long time and the garbage collector may not want to try to garbage collect it
for a long period of time.

APPENDIX B. OPCODES 186

FRQ The two FRQ bits contain information about how frequently the object will
be accessed; the system may be able to use this information to cache more
efficiently. If FRQ is 00, then no access information information is known. If
FRQ is FRQ, then the object will not be accessed frequently. If FRQ is 10,
then the object will be accessed relatively frequently in the near future. If FRQ
is 11, then the object should be kept as long as possible in the cache.

GRB The two GRB bits contain information about object garbage collection; the
system can use this information to perform garbage collection more efficiently.
If GRB is 00, then no garbage collection is available. If GRB is 01, then the
garbage collector should be run immediately on the object because it contains
many garbage references. If GRB is 10, then garbage collection should be
disabled for it. If GRB is 11, then garbage collection should be re-enabled for
the object.

NUL The NUL bit contains information about whether the object will ever be null.
If NUL is clear, then the object may or may not be null and the system should
make no assumptions about null checks. If NUL is set, the object will never be
null and the null checks can be avoided.

PIN The two PIN bits contain information about object pinning; the system can
use this information to prevent the garbage collector from moving a particular
object so pointer operations can be performed. If PIN is 00, then no pinning
information is available. If PIN is 01, then the object should be pinned in place.
If PIN is 10, then the object should be pinned at the location specified by the
next four extension words. If PIN is 11, then the object should be unpinned
and can be moved by the garbage collector.

TAG The three TAG bits indicate the tag that should be used when creating the
object. This attribute can be used to optimize for the creation of normal objects,
objects with code, futures, and pointers.

CSH The three CSH bits indicate another reference register with which the object
will be frequently used. The virtual machine should move the object in the
destination register so that it does not create cache conflicts with the object in
this register.

RES The remaining five bits are reserved for future extensions to the virtual machine.

APPENDIX B. OPCODES 187

Extension Words

If the additional word attribute is set, one additional extension word can be used to
hold more informational attributes. Four additional extension words may be needed
if the object is pinned.

Programming Notes

This opcode provides informational attributes to the runtime system.

APPENDIX B. OPCODES 188

B.27 CREATE A METHOD [MTH]

0 0 0 1 1 0 1 0 GEN GEN FRQ FRQ E D D D

15 0

word 0

I I I I I I I I I I OVR PIN PIN CSH CSH CSH

15 0

word 1

Figure B.27: Prepare Method Instruction

Description

This opcode creates a method from an array of words. The array of words is held in
a destination register. Certain languages may require method verification when the
method is created.

Required Attributes

All of the bits in the attribute byte are used for required attributes. The DDD
bits specify the destination reference register that will hold the pointer to the new
object. The E bit specifies whether the instruction has an additional word’s worth of
informational attributes.

Ten bits on the next extension word specify the constant pool index of the method
to create or overwrite.

Informational Attributes

Ten bits can be used to hold informational attributes.

FRQ The two FRQ bits specify how frequently the method will be accessed and
may provide information that is helpful to the cache. If FRQ is 00, then no
access information is available. If FRQ is 01, then the method will be accessed
infrequently. If FRQ is 10, then the method will be accessed frequently. If FRQ
is 11, then the method will be accessed extremely frequently.

APPENDIX B. OPCODES 189

GEN The two GEN bits specify how long the method will be needed, and provides a
hint to the virtual machine about possibly unloading the method in the future.
If GEN is 00, then no generational information is provided. If GEN is 01, then
the method will only be around for a short period of time. If GEN is 10, then
the method will be around for a long period of time. If GEN is 11, then the
method will never be unloaded from the virtual machine.

OVR The OVR bit specifies whether this method definition overwrites a current
entry in the class’s vtable. If OVR is clear, the method is added to the end of
the vtable. If OVR is set, the method overwrites a current entry in the vtable.
If OVR is clear but a method already exists at the vtable location, an exception
should be thrown.

PIN The two PIN bits contain information about method pinning; the system can
use this information to prevent the garbage collector from moving a particular
method so pointer operations can be performed. If PIN is 00, then no pinning
information is available. If PIN is 01, then the method should be pinned in
place. If PIN is 10, then the method should be pinned at the location specified
by the next four extension words. If PIN is 11, then the method should be
unpinned and can be moved by the garbage collector.

CSH The three CSH bits indicate another reference register with which this method
will be frequently called. The virtual machine should place the method in such
a way so that it does not create cache conflicts with the method in this register.

Extension Words

One, but future implementations may use the extension bit to add additional infor-
mation attributes.

Exceptions

Execution of this instruction can result in the following exceptions:

InvalidMethodException If the array of words is not a valid method

APPENDIX B. OPCODES 190

B.28 CREATE A CLASS [CLS]

0 0 0 1 1 0 1 0 GEN GEN FRQ FRQ E D D D

15 0

word 0

RES RES RES RES RES RES RES RES RES RES RES PIN PIN CSH CSH CSH

15 0

word 1

Figure B.28: Prepare Class Instruction

Description

This opcode creates a class from an array of words. The array of words is held in a
destination register. Certain languages may require class verification when the class
is created.

Required Attributes

All of the bits in the attribute byte are used for required attributes. The DDD
bits specify the destination reference register that will hold the pointer to the new
object. The E bit specifies whether the instruction has an additional word’s worth of
informational attributes.

Informational Attributes

Twenty bits can be used to hold informational attributes.

FRQ The two FRQ bits specify how frequently the class will be accessed and may
provide information that is helpful to the cache. If FRQ is 00, then no access
information is available. If FRQ is 01, then the class will be accessed infre-
quently. If FRQ is 10, then the class will be accessed frequently. If FRQ is 11,
then the class will be accessed extremely frequently.

APPENDIX B. OPCODES 191

GEN The two GEN bits specify how long the class will be needed, and provides a
hint to the virtual machine about possibly unloading the class in the future. If
GEN is 00, then no generational information is provided. If GEN is 01, then
the class will only be around for a short period of time. If GEN is 10, then the
class will be around for a long period of time. If GEN is 11, then the class will
never be unloaded from the virtual machine.

INR The INR bit specifies whether this class is an inner class. If IVR is clear, the
method is not an inner class. If IVR is set, the method overwrites is an inner
class of another class and objects of this class inherit the appropriate names,
methods, and variables.

PIN The two PIN bits contain information about object pinning; the system can
use this information to prevent the garbage collector from moving a particular
class so pointer operations can be performed. If PIN is 00, then no pinning
information is available. If PIN is 01, then the class should be pinned in place.
If PIN is 10, then the class should be pinned at the location specified by the
next four extension words. If PIN is 11, then the class should be unpinned and
can be moved by the garbage collector.

CSH The three CSH bits indicate another reference register with which this class
will be frequently used. The virtual machine should place the class in such a
way so that it does not create cache conflicts with the class in this register.

RES The remaining eleven bits are reserved for future extensions to the virtual
machine.

Extension Words

One, but future implementations may use the extension bit to add additional infor-
mation attributes.

Exceptions

Execution of this instruction can result in the following exceptions:

InvalidClassException If the array of words is not in the class file format.

APPENDIX B. OPCODES 192

B.29 BLOCK START [SBK]

0 0 0 1 1 1 0 0 N N FRQ FRQ E C V V

15 0

word 0

RES RES RES RES PAR PAR CON CON PMZ PMZ PMZ INL INL CSH CSH CSH

15 0

word 1

Figure B.29: Block Start Instruction

Description

This opcode signals the beginning of a block: a group of opcodes, a native method,
or a library call which can be bound to a ++VM opcode. Blocks must be terminated
using the block end opcode.

Required Attributes

This opcode has three required attributes. The NN bits specify the source of infor-
mation for this block. The E bit specifies whether the instruction has an additional
word’s worth of informational attributes. The C bit specifies whether this block is
critical to code execution. The V bits specify whether this block can be superceded
by a block that is defined later.

The NN bits specify the composition of instructions in the block. If the NN bits
are 00, then the block consists entirely of ++VM opcodes. If the NN bits are 01,
an extension word holds a ten-bit index into the constant pool for the name of the
library, and a six-bit index in that library for the function; this library function will
consist of ++VM opcodes. If the NN bits are 10, then the block consists entirely of
native instructions, and an extension word will specify the number of opcode words
to parse in order to reach the end block opcode. If the NN bits are 11, an extension
word holds a ten-bit index into the constant pool for the name of the library, and
a six-bit index in that library for the function; this library function will consist of
native instructions.

APPENDIX B. OPCODES 193

If the C bit is clear, this block is critical and the method should throw an exception
if this block cannot be understood. If C is not set, the block is optional and can
be ignored if not understood. If VV bit is 00, the opcode to which this block is
bound cannot be re-bound to another block, and the virtual machine should throw
an exception. If VV is 01, the opcode can be re-bound later in this method. If VV is
10, this opcode can be re-bound later in this class. If VV is 11, this opcode can be
re-bound anywhere, including in other classes.

Informational Attributes

When starting a block, there are eighteen bits available for informational attributes.

FRQ The two FRQ bits specify how frequently the code block will be accessed and
may provide information that is helpful to the cache. If FRQ is 00, then no
access information is available. If FRQ is 01, then the code block will be accessed
infrequently. If FRQ is 10, then the code block will be accessed frequently. If
FRQ is 11, then the code block will be accessed extremely frequently.

PAR The two PAR bits specify whether the block can be parallelized over multiple
threads. If PAR is 00, no information about block parallelization is provided.
If PAR is 01, then the block cannot be parallelized using multiple threads due
to possible side effects. If PAR is 10, the block can be parallelized over multiple
threads. If PAR is 11, the virtual machine is strongly encouraged to parallelize
the block.

CON The two CON bits specify whether the inputs to the block are constant. If
CON is 00, then no information about block input is available. If CON is 01,
then the block input will often fluctuate. If CON is 10, then block inputs will
often be constants. If CON is 11, then block inputs will always be constant.

PMZ The three PMZ bits specify an optimization level. If PMZ is 000, then no opti-
mization information is known. If PMZ is 001, this block should be interpreted
and binary translation should not be used. The remaining values of PMZ spec-
ify an increasingly sophisticated optimization level that should be applied to the
block, with a PMZ value of 111 specifying the greatest level of optimization.

INL The two INL bits specify whether this block should be inlined wherever it is
called. If INL is 00, no inlining information is provided. If INL is 01, the block
should not be inlined and should always be looked up in a method table. If

APPENDIX B. OPCODES 194

INL is 10, the block should be inlined into a method body where it is frequently
used. If INL is 11, the block should be inlined into a method wherever it is
used.

CSH The three CSH bits indicate another reference register with which this block
will be frequently called. The virtual machine should place the block in such a
way so that it does not create cache conflicts with the reference in this register.

RES The remaining four bits are reserved for future extensions.

Extension Words

One extension word holds the majority of the informational attributes available on
this opcode. An additional word may be necessary to hold a constant pool offset or a
length value, depending upon the value of the second N bit. Future implementations
may use the extension bit to add additional information attributes.

Exceptions

Execution of this instruction can result in the following exceptions:

BlockDefinitionException If the block cannot be defined

BlockRedefinitionException If the block cannot be redefined

APPENDIX B. OPCODES 195

B.30 BLOCK END [EBK]

0 0 0 1 1 1 0 1 B B D D D D D D

15 0

word 0

Figure B.30: Block End Instruction

Description

This opcode ends a block. The block can then be bound to an opcode at the method
level, the block level, or the thread level, though it is possible not to assign a block to
an opcode and simply use a block as a way of applying block attributes to a collection
of opcodes.

Required Attributes

This opcode has two required attributes. The BB bits specify the scope to which the
opcode should be bound. The SSSSSS bits specify the specific opcode to which the
block should be bound.

If BB is 00, the block should not be bound to an opcode and the SSSSSS bits
should be ignored. If BB is 01, the block should be bound to opcode 01SSSSSS
(64-127) at the method level. If BB is 10, the block should be bound to opcode
10SSSSSS (128-191) at the class level. If BB is 11, the block should be bound to
opcode 11SSSSSS (192-255) at the thread level.

Informational Attributes

No informational attributes are associated with this instruction.

Exceptions

Execution of this instruction can result in the following exceptions:

BlockDefinitionException If the block cannot be defined

BlockRedefinitionException If the block cannot be redefined

APPENDIX B. OPCODES 196

Programming Notes

This opcode must be matched with the most recent start block opcode.

APPENDIX B. OPCODES 197

B.31 THROW AN EXCEPTION [TRW]

0 0 0 1 1 1 1 0 GEN GEN FRQ FRQ E U CTH CTH

15 0

word 0

I I I I I I I I I I HDL HDL NTL CSH CSH CSH

15 0

word 1

Figure B.31: Throw Exception Instruction

Description

This opcode creates an exception. The class of the exception to create is specified
by a constant pool index. The exception is held in a machine register specialized for
exceptions, the this exception register. The exception must be caught by an exception
handler somewhere in the call stack; otherwise, the thread that threw the exception
will terminate with an error.

Required Attributes

This opcode has three required attributes. The U bit specifies whether the this
exception is uncatchable; if set, this exception cannot be caught by an exception
handler. The E bit specifies whether the instruction has an additional word’s worth
of informational attributes. Ten bits of the second instruction word specify an index
in the constant pool, the index of the exception to create.

Informational Attributes

Six bits in the first instruction word, and six bits in the second instruction word, are
available for informational attributes.

GEN The two GEN bits specify how long the exception will live, and provides a
hint to the virtual machine about garbage collection. If GEN is 00, then no
generational information is provided. If GEN is 01, then the exception will be

APPENDIX B. OPCODES 198

around for a short period of time. If GEN is 10, then the exception will be
around for a long period of time. If GEN is 11, then the exception will be
nearly permanent. The 10 and 11 settings should be used rarely.

FRQ The two FRQ bits specify how frequently the exception will occur. If FRQ is
00, then no prediction information is available. If FRQ is 01, then this exception
is unlikely to happen. If FRQ is 10, then this exception will happen frequently.
If FRQ is 11, this exception will happen very frequently.

CTH The two CTH bits specify where the exception will likely be caught. If CTH
is 00, than no information is available about the location of the handler. If
CTH is 01, then the exception will be caught by an extension handler for this
method. If CTH is 10, then the exception will be caught in the method that
called this method. If CTH is 11, then this method will not be caught and will
cause the thread to terminate.

HDL The two HDL bits specify how the exception will be caught. If HDL is 00,
then no catching information is provided. If HDL is 01, then the handler that
catches this exception will be looking for exceptions of the specified class. If
HDL is 10, then the handler that catches this exception will be looking for the
direct superclass of this exception type. If HDL is 11, then the handler will be
looking for any superclass of this exception type.

NTL The NTL bit indicates whether the exception should be initialized. If NTL is
clear, then the exception should be initialized. If NTL is set, then it is possible
not to initialize the exception since only its class matters.

CSH The three CSH bits indicate another reference register with which this excep-
tion will be frequently used. The virtual machine should place the exception
object in such a way so that it does not create cache conflicts with the reference
in this register.

Extension Words

One, though future extensions may set the extension bit and use an additional ex-
tension word for attributes.

APPENDIX B. OPCODES 199

B.32 CATCH AN EXCEPTION [CAT]

0 0 0 1 1 1 1 1 GEN GEN FRQ FRQ E C TRW TRW

15 0

word 0

I I I I I I I I I I HDL HDL RES RES RES RES

15 0

word 1

Figure B.32: Catch Exception Instruction

Description

This opcode creates an exception handler. The class of the exception to catch is
specified by a class in the instruction pool. The behavior of this opcode depends
upon the type of exception handling scheme used. If a stack unwinding scheme is
used, this opcode will prepare an exception table for the method. If a stack cutting
scheme is used, this opcode will set up an exception handler in the exception handler
register.

Required Attributes

This instruction has three required attributes. The C bit specifies whether a stack
unwinding or a stack cutting scheme should be used. The E bit specifies whether
the instruction has an extra extension word. Ten bits of the second instruction word
specify an index in the constant pool, the index of the exception to catch.

If C is 0, then stack unwinding should be used as exceptions will be relatively
rare and the exception handler register will not be used. If C is 1, then stack cutting
should be used and the exception handler should be placed in the exception handler
register.

Informational Attributes

Six bits in the attribute byte, and six bits in the extension word, can be used to hold
informational attributes.

APPENDIX B. OPCODES 200

GEN The two GEN bits specify how long the exception handler will be active here,
and provides a hint to the virtual machine about when the handler will be
overridden by another handler of the same type. If GEN is 00, then no overriding
information is provided. If GEN is 01, then the handler will be overridden in
the near future. If GEN is 10, then the handler will be around for a long time.
If GEN is 11, then the handler will be nearly permanent.

FRQ The two FRQ bits specify how frequently the exception will be caught here. If
FRQ is 00, then no prediction information is available. If FRQ is 01, then ex-
ception catching will rarely happen here. If FRQ is 10, then exception catching
will happen frequently. If FRQ is 11, then exception catching will happen very
frequently.

TRW The two TRW bits specify where the caught exception will be thrown. If
TRW is 00, than no throwing information is available. If TRW is 01, then the
exception will be thrown in this class. If TRW is 10, then the exception will
be thrown from a method directly called by this class. If TRW is 11, then the
exception will be thrown by a method deep in the call stack.

HDL The two HDL bits specify the type of exception to look for. If HDL is 00, then
no catching information is provided. If HDL is 01, then the handler should
look for exceptions of the specified class. If HDL is 10, then the handler should
anticipate catching subclasses of this exception type. If HDL is 11, then the
handler will be looking for interface implementations of this exception type.

RES The remaining four bits are reserved for future extensions to the virtual ma-
chine.

Extension Words

One, though future extensions may set the extension bit and use an additional ex-
tension word for attributes.

APPENDIX B. OPCODES 201

B.33 COMPARE DATA VALUES [CPD]

0 0 1 0 0 0 0 0 N N S S S D D D

15 0

word 0

Figure B.33: Compare Data Instruction

Description

This opcode compares two data values stored in data registers, the stack, the in-
struction stream, or the constant pool. This instruction explicitly sets the bits in
the condition control register. The type of comparison operation performed depends
upon the tags of both values.

Required Attributes

All of the bits in the attribute byte are required. The DDD bits indicate the desti-
nation register, though this register is unchanged during opcode execution. The five
remaining bytes indicate the opcode source.

If NN is 00, the three SSS indicate a source register. If NN is 01, the three SSS
bits are a small signed constant between -4 and +3. If NN is 10, the SSS bits are an
index to one of the first eight entries in the class’s constant pool. If NN is 11, then
the SSS bits signify that the source is one of eight special cases.

In the case where NN is 11, if SSS is 000, then one extension word holds a ten-bit
index to the source value in the constant pool. If SSS is 001, then the source value
is found directly in one subsequent extension word. If S is 010, then the source value
is found directly in two extension words, with the most significant word first. If SSS
is 011, then the source value is found directly in four extension words. If SSS is 100,
then the source is located at an offset from the this class pointer, an the offset is held
in one extension word. If SSS is 101, then the source is located at an offset from the
this class pointer, and the offset is held in one extension word. If SSS is 110, then the
source is the top value of the stack. The SSS value 111, where NN is 11, is reserved
for future use in the virtual machine and should not be used.

APPENDIX B. OPCODES 202

Extension Words

One, two or four extension words will be necessary if specified as a source location.
The standard opcode does not need additional extension words.

Exceptions

Execution of this instruction can result in the following exceptions.

TagException If the tags on the two values are not equal

APPENDIX B. OPCODES 203

B.34 COMPARE REFERENCE VALUES [CPR]

0 0 1 0 0 0 0 1 N N S S S D D D

15 0

word 0

Figure B.34: Compare Reference Instruction

Description

This opcode compares two reference values from reference registers or the stack. This
instruction performs a pure equality operation and is true if and only if the two
objects are stored at the same location in memory. This instruction explicitly sets
the bits in the condition control register.

Required Attributes

All of the bits in the attribute byte are required. The three least significant bits of
the attribute byte, the bits labeled DDD, indicate the destination register. The five
remaining bytes indicate the opcode source.

If NN is 00, the three SSS indicate a source register. If NN is 01, the source is the
null object and the SSS bits are ignored. The NN value 01 is reserved and should not
be used. If NN is 11, then the source comes from the top of the stack and the SSS
bits are ignored.

Exceptions

Execution of this instruction can result in the following exceptions.

TagException If the tags on the two values are not equal

APPENDIX B. OPCODES 204

B.35 COMPARE BOUNDS DATA [CBD]

0 0 1 0 0 0 1 0 S0 S0 S1 S1 S1 D D D

15 0

word 0

Figure B.35: Compare within Bounds for Data Instruction

Description

This opcode ensures that a certain value is greater than or equal to one argument
and strictly less than another. All three values must be data types.

If the comparison succeeds and the value is within the bounds, the z bit is set in
the condition code register. If the comparison fails because the number exceeds the
upper bound, the n and z bits are cleared, and if it fails because the number is less
than the lower bound, the n bit is set and the z is cleared. If the comparison fails for
any other reason, both the n and z bits are set.

Required Attributes

All of the bits in the attribute byte are required. The DDD bits on the first instruction
word indicate the destination data register. The source S1 specifies any one of the
eight data registers, while the source S0 specifies one of the four low data registers
(%d0 to %d3).

When this instruction is executed, DDD is the testing value, S0 is the lower bound,
and S1 is the upper bound.

Exceptions

Execution of this instruction can result in the following exceptions.

TagException If the tags of all three operands are not equal

APPENDIX B. OPCODES 205

B.36 COMPARE BOUNDS REFERENCE [CBR]

0 0 1 0 0 0 1 1 S1 S1 S0 S0 S0 D D D

15 0

word 0

Figure B.36: Compare within Bounds for Reference Instruction

Description

This opcode ensures that a certain value is greater than or equal to one argument
and strictly less than another. All three values must be reference types.

If the comparison succeeds and the value is within the bounds, the z bit is set in
the condition code register. If the comparison fails because the number exceeds the
upper bound, the n and z bits are cleared, and if it fails because the number is less
than the lower bound, the n bit is set and the z is cleared. If the comparison fails for
any other reason, both the n and z bits are set.

Required Attributes

All of the bits in the attribute byte are required. The DDD bits on the first instruction
word indicate the destination reference register. The source S0 specifies any one of
the eight reference registers, while the source S1 specifies one of the four low reference
registers (%d0 to %d3).

When this instruction is executed, DDD is the testing value, S0 is the lower bound,
and S1 is the upper bound.

Exceptions

Execution of this instruction can result in the following exceptions.

TagException If the tags of all three operands are not equal

Programming Notes

This instruction should be used with care, as the garbage collector may move reference
values.

APPENDIX B. OPCODES 206

B.37 CONDITIONAL BRANCH [BNZ]

0 0 1 0 0 1 0 0 N N B L L L L L

15 0

word 0

Figure B.37: Conditional Branch Instruction

Description

This opcode branches on various values of the n, z, and v bits of the condition code
register. If the correct n and z bits are set, the program counter is changed to the
specified value; otherwise, execution continues with the next instruction. The branch
offset is held in the instruction word or in an additional extension word.

ALW The ALW instruction, NNB = 000, performs an unconditional branch.

NOP The NOP instruction, NNB = 001, serves as a no-op instruction. No branch
is performed and the jump amount is ignored.

BEQ The BEQ instruction, NNB = 010, performs a branch equal if the z bit is set.

BNE The BNE instruction, NNB = 011, performs a branch not equal if the z bit is
not set.

BLT The BLT instruction, NNB = 100, performs a branch less than if the n bit is
set.

BGE The BGE instruction, NNB = 101, performs a branch greater than or equal if
the n bit is not set.

BLE The BLE instruction, NNB = 110, performs a branch less than or equal if either
the n or the z bits are set.

BGT The BGT instruction, NNB = 111, performs a branch greater than if neither
the n nor z bits are set.

APPENDIX B. OPCODES 207

Required Attributes

All of the bits in the attribute byte are required. The NN bits select the conditions
on which to jump. The B bit determines whether to branch if the condition code is
set or to branch if the condition code is not set. The LLLLL bits are a signed integer
that indicates the branch amount from the the first word of this opcode.

If NNB is 000, an ALW is performed. If NNB is 001, a NOP is performed. If
NNB is 010, a BEQ is performed. If NNB is 011, a BNE is performed. If NNB is
100, a BLT is performed. If NNB is 101, a BGE is performed. If NNB is 110, a BLE
is performed. If NNB is BGT, a BGT is performed.

If LLLLL is not 00000, the virtual machine will treat that value as a five-bit signed
integer and add it to the current program counter. Since a branch instruction back
on itself is superfluous, If LLLLL is 00000 then one extension word holds a sixteen-bit
signed offset to the branch location.

Informational Attributes

None, though predictive branching is implied. The virtual machine will assume that
the test will succeed and will load the instruction pipeline appropriately, even though
no informational attribute is expressly used.

Extension Words

If the jump bits are 00000, then one extension word is used to hold a 16-bit jump
index.

APPENDIX B. OPCODES 208

B.38 CONDITIONAL BRANCH [BXC]

0 0 1 0 0 1 0 1 N N B L L L L L

15 0

word 0

Figure B.38: Conditional Branch Instruction

Description

This opcode branches on various exception bits in the condition code register. If
the correct bits are set, the program counter is change to the specified value; other-
wise, execution continues with the next instruction. The branch offset is held in the
instruction word or in an additional extension word.

Required Attributes

All of the bits in the attribute byte are required. The NN bits select the conditions
on which to jump. The B bit determines whether to branch if the condition code is
set or to branch if the condition code is not set. The LLLLL bits are a signed integer
that indicates the branch amount from the the first word of this opcode.

If NNB is 000, the virtual machine will branch if the overflow bit is set. If NNB
is 001, a branch will occur if the overflow bit is not set. If NNB is 010, a branch will
occur if the underflow bit is set. If NNB is 011, a branch will occur if the underflow
bit is not set. If NNB is 100, a branch will occur if the exception bit is set. If NNB is
101, a branch will occur if the exception bit is not set. If NNB is 110, a branch will
occur if the future bit is set. If NNB is 111, a branch will occur if the future bit is
not set.

If LLLLL is 00000, then one extension word holds a sixteen-bit signed offset to
the branch location. If LLLLL is not 00000, the virtual machine will treat that value
as a five-bit signed integer and add it to the current program counter.

Informational Attributes

None, though predictive branching is implied. The virtual machine will assume that
the test will succeed and will load the instruction pipeline appropriately, even though
no informational attribute is expressly used.

APPENDIX B. OPCODES 209

Extension Words

If the jump bits are 00000, then one extension word is used to hold a 16-bit jump
index.

APPENDIX B. OPCODES 210

B.39 CALL METHOD [CAL]

0 0 1 0 0 1 1 0 N N TAG TAG TAG D D D

15 0

word 0

I I I I I I I I I I NLN NLN REG TLC FRQ FRQ

15 0

word 1

Figure B.39: Invoke Method Instruction

Description

This opcode calls a method. Methods can be called in four forms: statically, dy-
namically, wound, or via a closure. A new frame is created to hold the method,
if applicable. The index of the method to call is passed via a method index. The
method’s return values will be placed in registers %d6 and %d7 if they are data values
or in registers %r6 and %r7 if they are reference values.

Required Attributes

The call instruction has four required attributes. The E bit specifies whether the
instruction has an additional word’s worth of informational attributes. The NN bits
specify the type of method invocation to perform. The RRR bits specifies whether
the method returns data values, reference values, or both. Ten bits of the second
instruction word specify an index into the constant pool, the index of the method to
call.

If NN is 00, this invocation is a static method invocation and the %to should be
ignored. If NN is 01, this invocation is virtual and the %to should be used. If NN is
10, this invocation is a wound call and should be called first on the ancestors of this
class before calling it on this class. If NN is 11, the method is called via a closure,
the ten-bit index is ignored, and the TAG attribute bits are used to designate a data
register that holds the closure index.

If RRR is 000, the method returns void. The RRR value of 111 is reserved. If
RRR is 010, the method returns one data value in %d6. If RRR is 011, the method

APPENDIX B. OPCODES 211

returns two data values in %d6 and %d7. If RRR is 100, the method returns one
reference value in %r6. If RRR is 101, the method returns two data values in %r6
and %r7. If RRR is 110, the method returns one data and one reference value, in
%d6 and %r6 respectively. If RRR is 111, the method returns four values in %d6,
%d7, %r6, and %r7.

Informational Attributes

Three bits in the first instruction word, and six bits in the second, hold informational
attributes.

FRQ The two FRQ bits contain information about how frequently this method will
be called in the future; the system may be able to use this information to predict
program behavior more efficiently. If FRQ is 00, then no calling information in-
formation is known. If FRQ is 01, then the method will not be called frequently.
If FRQ is 10, then the method will be called relatively frequently in the near
future. If FRQ is 11, then the method will be called extremely frequently.

NLN The two NLN bits contain information about whether the method should be
inlined. If NLN is 00, then no inlining information is available. If NLN is 01,
then this method should be inlined wherever it is called. If NLN is 10, then the
method should not be inlined where it is called. If NLN is 11, then the method
will be expensive to optimize.

TLC The TLC bit contains whether the method should be invoked using a tail call.
If TLC is clear, the method should be called normally. If TLC is set, then the
method should be called in the same frame as the invoking frame.

TAG The three tag bits specify the tag of the reference on which this method will be
called. This attribute can be used to optimize for the creation of normal objects,
objects with code, futures, and pointers. This attribute is only available to non-
closure methods.

Extension Words

One extension word holds the index and information attribute values.

APPENDIX B. OPCODES 212

B.40 RETURN FROM METHOD CALL [RTN]

0 0 1 0 0 1 1 1 N N FRQ FRQ E D D D

15 0

word 0

Figure B.40: Return Instruction

Description

This opcode returns from a method call, returning a destination register, a reference
register, or void. The method that executed the bytecode is terminated, its frame is
destroyed, and execution proceeds in the outer method. The method’s return values
must be placed in registers %d0 and %d1 if they are data values or in registers %r0
and %r1 if they are reference values.

Required Attributes

This instruction has three required attributes. The E bit specifies whether the in-
struction has an extra extension word. The NN bits specify the type of return to
perform. The R bit specifies the number of values to return.

If NN is 00, the method returns void and R should be set to zero. If NN is 01 and
R is 0, the method returns the value in %d0. If NN is 01 and R is 1, then the method
returns both the values in %d0 and %d1. If NN is 10 and R is 0, the method returns
the value in %r0. If NN is 10 and R is 1, then the method returns the values in %r0
and %r1. If NN is 11 and R is 0, the method returns values in both %d0 and %r0. If
NN is 11 and R is 1, the method returns the values in %d0, %d1, %r0, and %r1.

Informational Attributes

Two bits are available for informational attributes.

FRQ The two FRQ bits specify how frequently this return will be executed. If
FRQ is 00, then no prediction information is available. If FRQ is 01, then
this return will rarely be executed. If FRQ is 10, then this return will be
frequently executed. If FRQ is 11, then this return will always be executed.
This information may help the system establish traces through the method.

APPENDIX B. OPCODES 213

TRN The two TRN bits specify whether method execution to this point has required
using values in registers %d2 to %d7 or registers %r2 to %r7, possibly allowing
future calls of this method to avoid a register window rotation. If TRN is 00,
then neither the data registers nor the reference registers have been manipulated
and no window turn is needed. If TRN is 01, then only data registers have been
manipulated and the reference register window need not be turned. If TRN is
10, then only reference registers have been manipulated and the data register
window need not be turned. If TRN is 11, both data and reference values have
been manipulated and so it will always be necessary to shift the register window.

Extension Words

None, but future implementations may use the extension bit to add additional infor-
mation attributes.

APPENDIX B. OPCODES 214

B.41 ENTER A MONITOR [MEN]

0 0 1 0 1 0 0 0 TMS XIT GET FTR E D D D

15 0

word 0

Figure B.41: Enter Monitor Instruction

Description

This opcode grabs a thread monitor. If the grab is successful, the thread locks the
object and continues code execution; if the grab is unsuccessful, it will either wait for
the lock to become available or it will create a future for the object.

Required Attributes

This instruction has two required attributes. The three least significant bits of the
first instruction word, DDD, specify the object whose monitor should be grabbed.
The E bit specifies whether the instruction has an extra extension word.

Informational Attributes

Four bits in the original instruction are available for informational attributes.

TMS The TMS bit specifies how many times to lock a given object. If TMS is clear,
the object is locked once. If TMS is set, the object is locked as many times as
possible.

XIT The XIT bit predicts how the monitor will be released. If XIT is clear, the mon-
itor will probably be released through the execution of a monitor exit opcode.
If XIT is set, the monitor will probably released by an exception handler.

GET The GET bit specifies whether or not the monitor grab will be successful and
can be used for pipelining. If GET is clear, then the thread will likely be able
to grab the monitor and will not have to be suspended. If GET is set, then the
thread will be unlikely to be able to grab the monitor.

APPENDIX B. OPCODES 215

FTR The FTR bit specifies whether a future should be created instead of suspending
the thread. If FTR is set, the thread should suspend and no future will be
created. If FTR is set, then execution should continue but the monitored object
should be treated as a future.

Extension Words

None, though future extensions may set the extension bit and use an additional
extension word for attributes.

APPENDIX B. OPCODES 216

B.42 EXIT A MONITOR [MEX]

0 0 1 0 1 0 0 1 TMS RES RES RES E D D D

15 0

word 0

Figure B.42: Monitor Exit Instruction

Description

This opcode leaves a thread monitor. If the release is successful, the thread decreases
the lock on the object and continues code execution; if the object is not locked by
this thread, an exception is thrown.

Required Attributes

This instruction has two required attributes. The three least significant bits of the
first instruction word, DDD, specify the object whose monitor should be grabbed.
The E bit specifies whether the instruction has an extra extension word.

Informational Attributes

Four bits in the original instruction are available for informational attributes.

TMS The TMS bit specifies how many times to unlock a given object. If TMS is
clear, the object is unlocked once. If TMS is set, all locks on the object are
released.

RES The remaining three bits are reserved for future extensions.

Extension Words

None, though future extensions may set the extension bit and use an additional
extension word for attributes.

APPENDIX B. OPCODES 217

B.43 YIELD PROCESSOR CONTROL [YLD]

0 0 1 0 1 0 1 0 N N RES RES E D D D

15 0

word 0

Figure B.43: Yield Processor Instruction

Description

This opcode tells a thread to suspend itself so another thread can run. This may be
useful to multithreaded programs.

Required Attributes

This instruction has two required attributes. The DDD bits specify the thread to
which control should be passed. The E bit specifies whether the instruction has an
extra extension word. The NN bits specify the type of yield to perform.

If NN is 00, control should be yielded to the system; the DDD register should be
ignored. If NN is 01, control should be yielded to the system for one quanta and then
back to this thread; the DDD register should be ignored. If NN is 10, control should
be yielded to the DDD thread without constraints. If NN is 11, control should be
yielded to the DDD thread for one quanta and then back to this thread.

Informational Attributes

Two bits in the original instruction are available for informational attributes.

RES Two bits are reserved for future extensions.

Extension Words

None, though future extensions may set the extension bit and use an additional
extension word for attributes.

APPENDIX B. OPCODES 218

B.44 SYNCHRONIZATION POINT [SYN]

0 0 1 0 1 0 1 1 RDR RDR RES RES E D D D

15 0

word 0

Figure B.44: Synchronization Point Instruction

Description

This opcode creates a synchronization point within the code. This is done by syn-
chronizing on a specific checkpoint object; when all threads have synchronized on
the object, they are all released. This provides a way to synchronize across multiple
threads.

Required Attributes

This instruction has two required attributes. The DDD bits specify the synchro-
nization object. The E bit specifies whether the instruction has an extra extension
word.

Informational Attributes

Four bits are available for informational attributes.

RDR The RDR bits specify the probable order in which a thread will synchronize.
If RDR is 00, no synchronization information is available. If RDR is 01, this
thread will probably be the first to synchronize. If RDR is 10, this thread will
probably be in the middle of the pack. If RDR is 11, this thread will probably
be the last to synchronize.

RES The remaining two bits are reserved for future extensions.

Extension Words

None, though future extensions may set the extension bit and use an additional
extension word for attributes.

APPENDIX B. OPCODES 219

B.45 ANNOTATION [ANO]

0 0 1 0 1 1 0 0 T N N N N N N N

15 0

word 0

I I I I I I I I I I C RES RES RES RES RES

15 0

word 1

Figure B.45: Annotation Instruction

Description

This opcode defines a code annotation, a way of providing additional information
about a set of opcodes. An annotation consists of an annotation header opcode an
a specified number of annotation words. The body of the annotation contains meta-
information about the code and can be used by the virtual machine to improve code
performance.

Annotations are defined by the implementer or other language designers, and
the precise usage of an annotation is left to the compiler writer and implementation
designer. If an annotation is not understood by the virtual machine, it is ignored.

Required Attributes

All the bits in the attribute bytes are required attributes. The NNNNNNN bits
specify an integer. The T bits specifies whether the integer is a constant or an index
to a constant.

If T is clear, the annotation length is described by the seven bit integer NNNNNNN.
If T is set, the annotation length is held in the constant pool at the seven-bit index
NNNNNNN.

The next word contains information about the name and type of the annotation.
This is held by a ten-bit index into the instruction pool. The length of this word
is included in the attribute length. The C bit specifies whether the annotation is
critical.

APPENDIX B. OPCODES 220

If the C bit is clear, this block is critical and the method should throw an exception
if this block cannot be understood. If C is not set, the block is optional and can be
ignored if not understood.

Informational Attributes

Five bits are available for informational attributes.

RES The remaining five bits are reserved for future extensions.

Extension Words

The specified number of extension words will be attached to the annotation opcode.
These extension words represent the annotation propper, and will be skipped if the
opcode is not understood.

APPENDIX B. OPCODES 221

B.46 LOOP [LUP]

0 0 1 0 1 1 0 1 Z Z M M B B P P

15 0

word 0

RES RES NRL NRL PAR PAR GTH GTH PMZ PMZ PMZ REG DIR DIR ARR ARR

15 0

word 1

Figure B.46: Loop Instruction

Description

This opcode is a loop annotation, an annotation common enough to be incorporated
into the standard opcode set. A loop is divided into four components: the initializa-
tion component, which is executed before the loop body; the comparison component,
which is the test that is performed at the top of the loop; the body component, which
is the repeated code in the loop; and the continue component, which changes the loop
variable. The loop opcode specifies which chunks of code make up these components,
as well as specifying additional information which may help improve the efficiency of
loop execution.

Required Attributes

There are eight required attributes in the loop instruction. The ZZ bits specify
the length of the initialization component, the MM bits specify the length of the
comparison component, the BB bits specify the length of the body component, and
the PP bits specify the length of the continue component.

All of these required attribute parts have the same form. If the bits have the
pattern 00, one extension word holds the component length as a sixteen-bit integer.
If the bits are 01, one extension word holds a ten-bit index into the constant pool
that indicates the length of the component. If the bits are 01, no extension word is
needed since a block opcode is used to hold the specified component. The value 11 is
reserved for future extensions.

APPENDIX B. OPCODES 222

Informational Attributes

Sixteen bits in an extension word are used to hold informational attributes.

NRL The two NRL bits specify whether this loop should be unrolled. If NRL is
00, no unrolling information is provided. If NRL is 01, the block should not be
unrolled. If NRL is 10, the loop should be unrolled if it is frequently executed.
If NRL is 11, the loop should be unrolled regardless of the number of times it
is executed.

PAR The two PAR bits specify whether the loop can be parallelized over multiple
threads. If PAR is 00, no information about loop parallelization is provided. If
PAR is 01, then the loop cannot be parallelized using multiple threads due to
possible side effects. If PAR is 10, the loop can be parallelized over multiple
threads. If PAR is 11, the virtual machine is strongly encouraged to parallelize
the loop.

GTH The two GTH bits predict how long this loop will last. If GTH is 00, then no
loop length information is available. If GTH is 01, then the loop length will be
short. If GTH is 10, then the loop length will be long. If A5 is 11, then the
class will be infinite.

PMZ The three PMZ bits specify an optimization level. If PMZ is 000, then no opti-
mization information is known. If PMZ is 001, this block should be interpreted
and binary translation should not be used. The remaining values of PMZ spec-
ify an increasingly sophisticated optimization level that should be applied to the
block, with a PMZ value of 111 specifying the greatest level of optimization.

REG The REG bit specifies whether the loop counter variable should be kept in a
data register. If REG is clear, then no information is available. If REG is set,
then the loop counter should be kept in a host register as much as possible.

DIR The two DIR bits specify the direction of the loop for caching purposes. If DIR
is 00, no information about the direction of the loop counter is available for
caching. If DIR is 01, then the loop counter moves incrementally upwards. If
DIR is 10, the loop counter moves incrementally downwards. If DIR is 11, the
loop counter moves around randomly and predicting counter behavior may be
difficult.

ARY The two ARY bits specify whether an array is being iterated in the loop. If
ARY is 00, then no information is available. If ARY is 01, then the counter is

APPENDIX B. OPCODES 223

not iterating over an array and is not an index into an array. If ARY is 10, then
the counter is iterating over a single array. If ARY is 11, then the counter is
iterating over multiple arrays.

RES The remaining two bits are reserved for future extensions.

Extension Words

Up to four extension words are needed to hold the lengths of the four components
(initialization, comparison, body, and continuation) of the loop. Fewer words will be
needed if the components are specified as blocks.

Bibliography

[ABC+] Ole Agsen, Lars Bak, Craig Chambers, Bay-Wei Chang, Urs Holzle, John
Maloney, Randall B. Smith, and David Ungar.

[Ash05] Elaine Ashton. Perl.org, 2005.

[Ayc03] John Aycock. A brief history of just-in-time. ACM Comput. Surv.,
35(2):97–113, 2003.

[BCF+99] Michael G. Burke, Jong-Deok Choi, Stephen Fink, David Grove, Michael
Hind, Vivek Sarkar, Mauricio J. Serrano, V. C. Sreedhar, Harini Srini-
vasan, and John Whaley. The jalapeno dynamic optimizing compiler for
java. In JAVA ’99: Proceedings of the ACM 1999 conference on Java
Grande, pages 129–141, New York, NY, USA, 1999. ACM Press.

[BDF+03] Paul Barham, Doris Dragovic, Keir Fraser, Stven Hand, Tim Harris, Alex
Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield. Xen and the art
of virtualization. In Proceedings of the ACM Symposium on Operating
Systems Principles, October 2003.

[BFHW75] J. D. Bagley, E. R. Floto, S. C. Hsieh, and V. Watson. Sharing data and
services in a virtual machine system. In SOSP ’75: Proceedings of the
fifth ACM symposium on Operating systems principles, pages 82–88, New
York, NY, USA, 1975. ACM Press.

[BS96] Thomas C. Bressoud and Fred B. Schneider. Hypervisor-based fault tol-
erance. ACM Transactions on Computing Systems, 14(1):80–107, 1996.

[CHL00] Trishul M. Chilimbi, Mark D. Hill, and James R. Larus. Making pointer-
based data structures cache conscious. Computer, 33(12):67–75, 2000.

224

BIBLIOGRAPHY 225

[CK94] Bob Cmelik and David Keppel. Shade: a fast instruction-set simulator
for execution profiling. In SIGMETRICS ’94: Proceedings of the 1994
ACM SIGMETRICS conference on Measurement and modeling of com-
puter systems, pages 128–137, New York, NY, USA, 1994. ACM Press.

[CN01] Peter M. Chen and Brian D. Noble. When virtual is better than real. In
HOTOS ’01: Proceedings of the Eighth Workshop on Hot Topics in Op-
erating Systems, page 133, Washington, DC, USA, 2001. IEEE Computer
Society.

[Cor05a] Apple Corporation. The brains behind apple’s rosetta: Transitive. CNet
News.com”, 2005.

[Cor05b] Microsoft Corporation. Common language runtime overview, 2005.

[Cor05c] Transmeta Corporation. Tansmeta code morphing software. Crusoe Ar-
chitecture, 2005.

[Cre81] Robert J. Creasy. The origin of the vm/370 time-sharing system. IBM
Journal of Research and Development, 25(5):483–490, 1981.

[CRP+05] Daniel Chaver, Miguel A. Rojas, Luis Pinuel, Manuel Prieto, Francisco
Tirado, and Michael C. Huang. Energy-aware fetch mechanism: trace
cache and btb customization. In ISLPED ’05: Proceedings of the 2005
international symposium on Low power electronics and design, pages 42–
47, New York, NY, USA, 2005. ACM Press.

[CUL89] C. Chambers, D. Ungar, and E. Lee. An efficient implementation of
SELF a dynamically-typed object-oriented language based on proto-
types. In Norman Meyrowitz, editor, Proceedings of the Conference
on Object-Oriented Programming Systems, Languages, and Applications
(OOPSLA), volume 24, pages 49–70, New York, NY, 1989. ACM Press.

[Dic73] Lloyd I. Dickman. Small virtual machines: A survey. In Proceedings of
the workshop on virtual computer systems, pages 191–202, New York, NY,
USA, 1973. ACM Press.

[Dik00] Jeff Dike. A user-mode port of the Linux kernel. In Proceedings of the
4th Annual Linux Showcase and Conference, October 2000.

BIBLIOGRAPHY 226

[Fat81] Richard J. Fateman. Views on transportability of lisp and lisp-based
systems. In SYMSAC ’81: Proceedings of the fourth ACM symposium
on Symbolic and algebraic computation, pages 137–141, New York, NY,
USA, 1981. ACM Press.

[FHL+96] Bryan Ford, Mike Hibler, Jay Lepreau, Patrick Tullmann, Godmar Back,
and Stephen Clawson. Microkernels meet recursive virtual machines. In
Operating Systems Design and Implementation, pages 137–151, 1996.

[FHN+04] Keir Fraser, Steven Hand, Rolf Neugebauer, Ian Pratt, Andrew Warfield,
and Mark Williamson. Reconstructing i/o. Technical Report UCAM-CL-
TR-596, University of Cambridge, Computer Laboratory, August 2004.

[FM90] Marc Feeley and James S. Miller. A parallel virtual machine for efficient
scheme compilation. In LFP ’90: Proceedings of the 1990 ACM conference
on LISP and functional programming, pages 119–130, New York, NY,
USA, 1990. ACM Press.

[GH97] Bruce Greer and Greg Henry. High performance software on intel pentium
pro processors or micro-ops to teraflops. In Supercomputing ’97: Proceed-
ings of the 1997 ACM/IEEE conference on Supercomputing (CDROM),
pages 1–13, New York, NY, USA, 1997. ACM Press.

[GM96] James Gosling and Henry McGilton. The java language environment.
White Paper, 1996.

[Gol73] R. P. Goldberg. Architecture of virtual machines. In Proceedings of the
workshop on virtual computer systems, pages 74–112, New York, NY,
USA, 1973. ACM Press.

[GR80] L. J. Groves and W. J. Rogers. The design of a virtual machine for ada.
In SIGPLAN ’80: Proceeding of the ACM-SIGPLAN symposium on Ada
programming language, pages 223–234, New York, NY, USA, 1980. ACM
Press.

[GR83a] Adele Goldberg and David Robson. Formal Specification of the Object in
Memory. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 1983.

BIBLIOGRAPHY 227

[GR83b] Adele Goldberg and David Robson. Smalltalk-80: the language and its
implementation. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 1983.

[GTHR99] Kinshuk Govil, Dan Teodosiu, Yongqiang Huang, and Mendel Rosenblum.
Cellular disco: resource management using virtual clusters on shared-
memory multiprocessors. In SOSP ’99: Proceedings of the seventeenth
ACM symposium on Operating systems principles, pages 154–169, New
York, NY, USA, 1999. ACM Press.

[Gum83] Peter H. Gum. System/370 extended architecture: Facilities for virtual
machines. IBM Journal of Research and Development, 27(6):530–544,
1983.

[HS04] Shiliang Hu and James E. Smith. Using dynamic binary translation to
fuse dependent instructions. In CGO ’04: Proceedings of the international
symposium on Code generation and optimization, page 213, Washington,
DC, USA, 2004. IEEE Computer Society.

[Hug97] Jim Hugunin. Python and java: The best of both worlds. 0, 1997.

[IKM+97] Dan Ingalls, Ted Kaehler, John Maloney, Scott Wallace, and Alan Kay.
Back to the future: the story of squeak, a practical smalltalk written in it-
self. In OOPSLA ’97: Proceedings of the 12th ACM SIGPLAN conference
on Object-oriented programming, systems, languages, and applications,
pages 318–326, New York, NY, USA, 1997. ACM Press.

[Joh78] JohnMcCarthy. History of lisp. In HOPL-1: The first ACM SIGPLAN
conference on History of Programming Languages, pages 217–223, New
York, NY, USA, 1978. ACM Press.

[KDC03] Samuel T. King, George W. Dunlap, and Peter M. Chen. Operating
system support for virtual machines. In Proceedings of the 2003 USENIX
Annual Technical Conference, pages 71–84, June 2003.

[Kla00] Alexander Klaiber. The technology behind crusoe processors. White
Paper of Transmeta Corporation, January 2000.

[Kum04] K. V. Seshu Kumar. When and what to compile/optimize in a virtual
machine? SIGPLAN Not., 39(3):38–45, 2004.

BIBLIOGRAPHY 228

[LY99] Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification.
Addison-Wesley Longman Publishing Co., Inc., 1999.

[Mac05] Jikes RVM Virtual Machine. Class vm javaheader. Jikes RVM Header
Files and Documentation, 2005.

[Mal73] Efrem G. Mallach. On the relationship between virtual machines and
emulators. In Proceedings of the workshop on virtual computer systems,
pages 117–126, New York, NY, USA, 1973. ACM Press.

[Mar03] Alex Martelli. Python in a Nutshell. O’Reilly & Associates, Inc., Se-
bastopol, CA, USA, 2003.

[Mir87] Eliot Miranda. Brouhaha- a portable smalltalk interpreter. In OOP-
SLA ’87: Conference proceedings on Object-oriented programming sys-
tems, languages and applications, pages 354–365, New York, NY, USA,
1987. ACM Press.

[Mit03] John Mitchel. Concepts in Object-Oriented Languages. Cambridge Uni-
versity Press, 2003.

[Nel79] Philip A. Nelson. A comparison of pascal intermediate languages. In SIG-
PLAN ’79: Proceedings of the 1979 SIGPLAN symposium on Compiler
construction, pages 208–213, New York, NY, USA, 1979. ACM Press.

[NR302a] ECMA NR39/TG3. Common Language Infrastructure, 2002.

[NR302b] ECMA NR39/TG3. Common Language Infrastructure, 2002.

[OKN01] Takeshi Ogasawara, Hideaki Komatsu, and Toshio Nakatani. A study of
exception handling and its dynamic optimization in java. In OOPSLA ’01:
Proceedings of the 16th ACM SIGPLAN conference on Object oriented
programming, systems, languages, and applications, pages 83–95, New
York, NY, USA, 2001. ACM Press.

[Org03] Python Organization. Python library reference. Python Website, 2003.

[Org05a] Jython Organization. Jython documentation. Jython Web Site, 2005.

[Org05b] Parrot Organization. Parrotcode: Parrot documentation. Documentation
Snapshot from the Parrot Source, 2005.

BIBLIOGRAPHY 229

[Org06] Python Organization. The python programming language website, 2006.

[PD82] Steven Pemberton and Martin Daniels. Pascal Implementation: The P4
Compiler and Interpreter. Prentice Hall, 1982.

[Pel04] Michel Pelletier. Python bytecode verification. Python Standards Track,
2004.

[PG74] Gerald J. Popek and Robert P. Goldberg. Formal requirements for virtu-
alizable third generation architectures. Commun. ACM, 17(7):412–421,
1974.

[SAP05] SAP. Startup supplies translation technology to apple. SAP info, 2005.

[SCP+02] Constantine P. Sapntzakis, Ramesh Chandra, Ben Pfaff, Jim Chow,
Monika S. Lam, and Mendel Rosenblum. Optimizing the migration of
virtual computers. SIGOPS Oper. Syst. Rev., 36(SI):377–390, 2002.

[SG96] Guy Steele and Richard Gabriel. The evolution of lisp. History of Pro-
gramming Languages - II, pages 233–330, 1996.

[SGG05] Abraham Silberschatz, Greg Gange, and Peter Galvin. Operating System
Concepts 7th ed. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 2005.

[SM79] Love H. Seawright and Richard A. MacKinnon. Vm/370 - a study of
multiplicity and usefulness. IBM Systems Journal, 18(1):4–17, 1979.

[SN05] James E. Smith and Ravi Nair. Virtual Machines: Versatile Platforms
for Systems and Processes. Morgan Kauffman Publishers, San Francisco,
CA, USA, 2005.

[Sug02] Dan Sugalski. Parrot in detail. In Yet Another Perl Conference, 2002.

[SVL01] Jeremy Sugerman, Ganesh Venkitachalam, and Beng-Hong Lim. Vir-
tualizing I/O devices on VMWare workstation’s hosted virtual machine
monitor, 2001.

[Tai98] Antero Taivalsaari. Implementing a java tm virtual machine in the java
programming language, 1998.

BIBLIOGRAPHY 230

[Uea05] Rich Uhlig and Gil Neiger et al. Intel virtualization technology. Computer
Magazine, 38(5):48–56”, 2005.

[Wal02] Carl Waldspurger. Memory resource management in VMware ESX server.
In Proceedings of the 5th Symposium on Operating Systems Design and
Implementation, 2002.

[WBC99] Allen Wirfs-Brock and Pat Caudill. Instantiations, Inc Paper, 1999.

[WCSG05] Andrew Whitaker, Richard Cox, Marianne Shaw, and Steven Gribble.
Rethinking the design of virtual machine monitors. Computer Magazine,
38(5):57–62, 2005.

[Wir93] N. Wirth. Recollections about the development of pascal. In HOPL-
II: The second ACM SIGPLAN conference on History of programming
languages, pages 333–342, New York, NY, USA, 1993. ACM Press.

[WSG02] Andrew Whitaker, Marianne Shaw, and Steven D. Gribble. Scale and
performance in the Denali isolation kernel. In Proceedings of the 5th
Symposium on Operating Systems Design and Implementation, 2002.

[YvR01] Ka-Ping Yee and Guido van Rossum. Iterators. Python Standards Track,
2001.

