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Abstract

This paper explores online learning approaches

for detecting malicious Web sites (those involved

in criminal scams) using lexical and host-based

features of the associated URLs. We show that

this application is particularly appropriate for on-

line algorithms as the size of the training data

is larger than can be efficiently processed in

batch and because the distribution of features

that typify malicious URLs is changing contin-

uously. Using a real-time system we developed

for gathering URL features, combined with a

real-time source of labeled URLs from a large

Web mail provider, we demonstrate that recently-

developed online algorithms can be as accurate

as batch techniques, achieving classification ac-

curacies up to 99% over a balanced data set.

1. Introduction

As new communications technologies drive new opportu-

nities for commerce, they inevitably create new opportuni-

ties for criminal actors as well. The World Wide Web is

no exception to this pattern, and today millions of rogue

Web sites advance a wide variety of scams including mar-

keting counterfeit goods (e.g., pharmaceuticals or luxury

watches), perpetrating financial fraud (e.g., “phishing”) and

propagating malware (e.g., via “drive-by” exploits or social

engineering). What all of these activities have in common

is the use of the Uniform Resource Locator (URL) as a vec-

tor to bring Internet users into their influence. Thus, each

time a user decides whether to click on an unfamiliar URL

they must implicitly evaluate the associated risk. Is that

URL safe to click on, or will it expose the user to poten-

tial exploitation? Not surprisingly, this can be a difficult

judgment for individual users to make.

As a result, security researchers have developed various

Appearing in Proceedings of the 26
th International Conference

on Machine Learning, Montreal, Canada, 2009. Copyright 2009
by the author(s)/owner(s).

systems to protect users from their uninformed choices.

By far the most common technique, deployed in browser

toolbars, Web filtering appliances and search engines, is

“blacklisting.” Using this approach, a third-party service

compiles the names of “known bad” Web sites (labeled by

combinations of user feedback, Web crawling and heuristic

analysis of site content) and distributes the list to its sub-

scribers. While such systems have minimal query overhead

(just searching for a URL within the list) they can only of-

fer modest accuracy since it is impractical for any blacklist

to be comprehensive and up-to-date (Sinha et al., 2008).

Thus, a user may click on a malicious URL before it ap-

pears on a blacklist (if it ever does). Alternatively, some

systems also intercept and analyze full Web site content as

it is downloaded. This approach can offer higher accuracy,

but requires far more run-time overhead, and may inadver-

tently expose users to the very threats they seek to avoid.

In this paper, we focus on a complementary technique —

lightweight real-time classification of the URL itself to pre-

dict whether the associated site is malicious. We use vari-

ous lexical and host-based features of the URL for classifi-

cation, but excludeWeb page content. We are motivated by

prior studies noting distinguishing commonalities in such

features for malicious URLs (Chou et al., 2004; McGrath

& Gupta, 2008). If properly automated, this technique can

afford the low classification overhead of blacklisting while

offering far greater accuracy (and may also be used as a

low-cost pre-filter for more expensive techniques).

To that end, our paper’s primary contribution is the success-

ful application of online learning algorithms to the problem

of predicting such malicious URLs. Our earlier work (Ma

et al., 2009) is among several previous systems for URL

classification that have relied on batch learning algorithms.

However, we argue that online methods are far better suited

to the practical nature of this problem for two reasons: (1)

Online methods can process large numbers of examples far

more efficiently than batch methods. (2) We need to adapt

to changes in malicious URLs and their features over time.

To demonstrate this approach, we have built a URL classi-

fication system that uses a live feed of labeled URLs from

a large Web mail provider, and that collects features for the
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URLs in real time (see Figure 2). Using this data, we show

that online algorithms can be more accurate than batch al-

gorithms in practice because the amount of data batch algo-

rithms can train on is resource-limited. We compare clas-

sical and modern online learning algorithms and find the

Confidence-Weighted algorithm achieves accuracies up to

99% over a balanced data set. Finally, we show that contin-

uous retraining over newly-encountered features is critical

for adapting the classifier to detect new, malicious URLs.

We begin the rest of the paper by providing more back-

ground on the application of detecting malicious URLs,

then describing the online algorithms we use for classifi-

cation. Next, we describe our data collection methodology

and evaluate the models over our data set of labeled URLs.

Finally, we conclude with an overall discussion.

2. Application

Our goal is to detect malicious Web sites from the lexical

and host-based features of their URLs. This section pro-

vides background for our application with respect to the

features we use for URL classification, as well as placing

our work in context with related work.

2.1. Features

Like our previous study (Ma et al., 2009), we analyze lex-

ical and host-based features because they contain informa-

tion about the URL and host that is straightforward to col-

lect using automated crawling tools. Thus, the list of fea-

tures is extensive, but not necessarily exhaustive.

We do not include the content of the Web page or the con-

text of the URL (e.g., the page or email containing the

URL) as features for several reasons. (1) Avoiding page

content downloads is strictly safer. (2) Classifying a URL

with a trained model is a lightweight operation compared

to first downloading the page contents and then analyzing

them. (3) We want to apply our methods on URLs regard-

less of the context in which they appear (pages, email, chat,

calendars, games, etc.), so we are not tied to a particular

application setting. And (4) reliably obtaining the content

of a page can become an issue due to content “cloaking,”

whereby a malicious site may serve benign versions of a

page to a honeypot IP address run by a security practitioner,

but serve malicious versions to other users. Nevertheless,

the evaluations in Section 5 show that classification with

just lexical and host-based features of URLs, without any

context, can still be highly accurate.

Table 1 lists the lexical and host-based feature types we

consider and the number contributed by each type. Overall,

lexical types account for 62% of features and host-based

types account for 38%. We next describe the feature types

and the motivation behind including them for classification.

Table 1. Feature breakdown on Day 100 of the experiments.

Lexical Host-Based
Feature type Count Feature type Count

Hostname 835,764 WHOIS info 917,776
Primary domain 738,201 IP prefix 131,930
Path tokens 124,401 AS number 39,843
Last path token 92,367 Geographic 28,263
TLD 522 Conn. speed 52
Lexical misc. 6 Host misc. 37

Lexical 1,791,261 Host-Based 1,117,901

Lexical features: These features allow us to capture

the property that malicious URLs tend to “look dif-

ferent” from benign URLs. For example, the appear-

ance of the token ‘.com’ in the URL ‘www.ebay.com’

is not unusual. However, the appearance of ‘.com’ in

‘www.ebay.com.phishy.biz’ or ‘phish.biz/www.ebay.com/

index.php’ could indicate an attempt by criminals to spoof

the domain name of a legitimate commercial Web site.

Similarly, we would like to capture the fact that there are

certain red flag keywords that tend to appear in malicious

URLs — e.g., ‘ebayisapi’ would appear frequently in the

path of URLs attempting to spoof an eBay page.

To implement these features, we use a bag-of-words repre-

sentation of tokens in the URL, where ‘/’, ‘?’, ‘.’, ‘=’, ‘-’,

and ‘ ’ are delimiters. We distinguish tokens that appear in

the hostname, path, the top-level domain (TLD), primary

domain name (the domain name given to a registrar), and

last token of the path (to capture file extensions). Thus,

‘com’ in the TLD position of a URL would be a different

token from ‘com’ in other parts of the URL. We also use

the lengths of the hostname and the URL as features.

Host-based features: These features describe properties

of the Web site host as identified by the hostname portion

of the URL. They allow us to approximate “where” mali-

cious sites are hosted, “who” own them, and “how” they

are managed. We examine the following sets of properties

to construct host-based features:

WHOIS information — This includes domain name regis-

tration dates, registrars, and registrants. So if a set of ma-

licious domains are registered by the same individual, we

would like to treat such ownership as a malicious feature.

Location — This refers to the host’s geography, IP address

prefix, and autonomous system (AS) number. So if mali-

cious URLs tend to be hosted in a specific IP prefix of an

Internet service provider (ISP), then we want to account for

that disreputable ISP when classifying URLs.

Connection speed — If some malicious sites tend to reside

on compromised residential machines (connected via cable

or DSL), then we want to record the host connection speed.

Membership in blacklists—Over our experiments, 55% of

malicious URLs were present in blacklists. Thus, although

this feature is useful, it is still not comprehensive.
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Figure 1. Cumulative number of features observed over time for

our live URL feeds. We highlight a few examples of new features

at the time they were introduced by new malicious URLs.

Other DNS-related properties — These include time-to-

live (TTL), spam-related domain name heuristics (Rudd,

2007), and whether the DNS records share the same ISP.

Figure 1 shows the cumulative number of features for each

day of the evaluations. Each day’s total includes new fea-

tures introduced that day and all old features from previous

days (see Section 5 on our methodology for new features).

The dimensionality grows quickly because we assign a bi-

nary feature for every token we encounter among the URL

lexical tokens, as well as WHOIS and location properties.

As we will show in Section 5.3, accounting for new fea-

tures like the ones in Figure 1 is beneficial for detecting

new malicious URLs.

2.2. Related Work

The most direct comparison to our work comes from Gar-

era et al. (2007), who classify phishing URLs using logistic

regression over 18 hand-selected features. The features in-

clude red-flag keywords, Google Page Rank and Web qual-

ity guidelines scores. Their classifier achieves 97.3% ac-

curacy over a set of 2,500 URLs. Although similar in mo-

tivation and methodology, our study differs in scope (with

evaluations focused on detecting spamming and phishing

sites), scale (orders of magnitude more features and URLs),

and algorithmic approach (online vs. batch learning).

Provos et al. (2008) study drive-by exploit URLs, and use

a patented machine learning algorithm along with features

derived from Web page content. Fette et al. (2007) and

Bergholz et al. (2008) examine select properties of URLs

contained within an email to aid the machine learning clas-

sification of phishing emails (not the URLs themselves).

Several projects have also explored operating systems-level

techniques whereby the client visits the Web site using

an instrumented virtual machine (VM) (Moshchuk et al.,

2006; Wang et al., 2006; Provos et al., 2007). The VM

can emulate any client-side exploits that occur as a result

of visiting a malicious site, and the instrumentation can de-

tect whether an infection has occurred. In this way, the VM

serves as a protective buffer for the user.

Finally, many commercial efforts exist to protect users

from visiting malicious URLs such as McAfee’s SiteAd-

visor, IronPort Web Reputation, WebSense ThreatSeeker

Network, WOT Web of Trust, and Google Toolbar. These

approaches are based on blacklist construction, user feed-

back, and proprietary feature analysis.

3. Online Algorithms

This section briefly describes the online learning algo-

rithms we use for our evaluations. Formally, the algorithms

are trying to solve an online classification problem over a

sequence of pairs {(x1, y1), (x2, y2), ..., (xT , yT )}, where
each xt is an example’s feature vector and yt ∈ {−1,+1}
is its label. At each time step t during training, the al-

gorithm makes a label prediction ht(xt), which for linear

classifiers is ht(x) = sign(wt · x).

After making a prediction, the algorithm receives the actual

label yt. (If ht(xt) 6= yt, we record an error for time t.)

Then, the algorithm constructs the hypothesis for the next

time step ht+1 using ht, xt and yt.

As practitioners, we have no vested interest in any partic-

ular strategy for online learning. We simply want to de-

termine the approach that scales well to problems of our

size and yields the best performance. To that end, the on-

line methods we evaluate are a mix of classical and recent

algorithms. We present the models in order of increasing

sophistication with respect to the objective functions and

the treatment of classification margin (which we can also

interpret as classification confidence).

Perceptron: This classical algorithm is a linear classifier

that makes the following update to the weight vector when-

ever it makes a mistake (Rosenblatt, 1958):

wt+1 ← wt + ytxt (1)

The advantage of the Perceptron is its simple update rule.

However, because the update rate is fixed, the Perceptron

cannot account for the severity of the misclassification. As

a result, the algorithm can overcompensate for mistakes in

some cases and undercompensate for mistakes in others.

Logistic Regression with Stochastic Gradient Descent:

Many batch algorithms use gradient descent to optimize an

objective function that is expressed as a sum of the exam-

ples’ individual objective functions. Stochastic gradient de-

scent (SGD) provides an online means for approximating

the gradient of the original objective, whereby the model

parameters are updated incrementally by the gradients of

individual objectives. In this paper we evaluate SGD as

applied to logistic regression.
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Let P (yt = +1|xt) = σ(w · xt) be the likelihood that ex-

ample t’s label is+1, where the sigmoid function is σ(z) =
[1 + e−z]−1. Moreover, let Lt(w) = log σ(yt(w · xt)) be
the log-likelihood for example t. Then the update for each

example in logistic regression with SGD is as follows:

wt+1 ← wt + γ
∂Lt

∂w
= wt + γ∆txt (2)

where ∆t = yt+1
2 − σ(wt ·xt) and γ is a constant training

rate. We do not decrease γ over time so that the parameters

can continually adapt to new URLs. The update resembles

a Perceptron, except with a learning rate that is proportional

to ∆t, the difference between the actual and predicted like-

lihood that the label is+1. This multiplier allows the model

to be updated (perhaps by a small factor) even when there

is no prediction mistake.

SGD has received renewed attention because of recent re-

sults on the convergence of SGD algorithms and the cast-

ing of classic algorithms as SGD approximations (Bottou,

1998; Bottou & LeCun, 2004). For example, the Percep-

tron can be viewed as an SGD minimization of the hinge-

loss function Loss(w) =
∑

t max{0,−yt(w · xt)}.

Passive-Aggressive (PA) Algorithm: The goal of the

Passive-Aggressive algorithm is to change the model as

little as possible to correct for any mistakes and low-

confidence predictions it encounters (Crammer et al.,

2006). Specifically, with each example PA solves the fol-

lowing optimization:

wt+1 ← argmin
w

1
2‖wt −w‖2

s.t. yi(w · xt) ≥ 1
(3)

Updates occur when the inner product does not exceed a

fixed confidence margin — i.e., yt(wt · xt) < 1. The

closed-form update for all examples is as follows:

wt+1 ← wt + αtytxt (4)

where αt = max{ 1−yt(wt·xt)
‖xt‖2 , 0}. (The details of the

derivation are in Crammer et al., 2006.) The PA algorithm

has been successful in practice because the updates explic-

itly incorporate the notion of classification confidence.

Confidence-Weighted (CW) Algorithm: The idea behind

Confidence-Weighted classification is to maintain a differ-

ent confidence measure for each feature so that less confi-

dent weights are updated more aggressively than more con-

fident weights. The “Stdev” update rule for CW is similar

in spirit to PA. However, instead of describing each feature

with a single coefficient, CW describes per-feature confi-

dence by modeling uncertainty in weight wi with a Gaus-

sian distribution N (µi,Σi) (Dredze et al., 2008; Crammer

et al., 2009). Let us denoteµ as the vector of feature means,

and Σ as the diagonal covariance matrix (i.e., the confi-

dence) of the features. Then the decision rule becomes

ht(x) = sign(µt · x) — which is the result of comput-

ing the average signed margin wt · x, where wt is drawn

from N (µt,Σt), and then taking the sign.

The CW update rule adjusts the model as little as possi-

ble so that xt can be correctly classified with probability

η. Specifically, CW minimizes the KL divergence between

Gaussians subject to a confidence constraint at time t:

(µt+1,Σt+1)← argmin
µ,Σ

DKL(N (µ,Σ)‖N (µt,Σt))

s.t. yi(µ · xt) ≥ Φ−1(η)
√

x⊤
t Σxt

(5)

where Φ is the cumulative distribution function of the stan-

dard normal distribution. This optimization yields the fol-

lowing closed-form update:

µt+1 ← µt + αtytΣtxt

Σ
−1
t+1 ← Σ

−1
t + αtφu

− 1

2

t diag2(xt)
(6)

where αt, ut and φ are defined in Crammer et al. (2009).

However, we can see that if the variance of a feature is

large, the update to the feature mean will be more aggres-

sive. As for performance, the run time of the update is

linear in the number of non-zero features in x.

Overall, because the CW algorithm makes a fine-grain dis-

tinction between each feature’s weight confidence, CW

can be especially well-suited to detecting malicious URLs

since our data feed continually introduces a dynamic mix

of new and recurring features.

Related Algorithms: We experimented with nonlinear

classification using online kernel-based algorithms such

as the Forgetron (Dekel et al., 2008) and the Projec-

tron (Orabona et al., 2008). To make computation tractable,

these algorithms budget (or at least try to reduce) the size

of the support set used for kernel calculations. Our pre-

liminary evaluations revealed no improvement over linear

classifiers. However, we are continuing to evaluate budget

algorithms for long term use.

4. Data Collection

This section describes our live sources of labeled URLs

and the system we deploy to collect features in real time.

Figure 2 illustrates our data collection architecture, which

starts with two feeds of malicious and benign URLs.

We obtain examples of malicious URLs from a large Web

mail provider, whose live, real-time feed supplies 6,000-

7,500 examples of spam and phishing URLs per day. The

malicious URLs are extracted from email messages that

users manually label as spam, run through pre-filters to ex-

tract easily-detected false positives, and then verified man-

ually as malicious.
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Figure 2. Overview of real-time URL feed, feature collection, and

classification infrastructure.

We randomly draw our examples of benign URLs from

Yahoo’s directory listing. A random sample from

this directory can be generated by visiting the link

http://random.yahoo.com/bin/ryl.

Combined, we collect a total of 20,000 URLs per day from

the two URL feeds, and the average ratio of benign-to-

malicious URLs is 2-to-1. We ran our experiments for 100

days, collecting nearly 2 million URLs (there were feed

outages during Days 35–40). However, the feeds only pro-

vide URLs, not the accompanying features.

Thus, we deploy a system to gather features in real-time.

The real-time aspect is important because we want the val-

ues to reflect the features a URL had when it was first in-

troduced to the feed (which ideally reflects values for when

it was introduced to the wild). For every incoming URL,

our feature collector immediately queries DNS, WHOIS,

blacklist and geographic information servers, as well as

processing IP address-related and lexical-related features.

Our live feed is notably different from data sets such as

the webspam set from the PASCAL Large Scale Learning

Challenge (Sonnenburg et al., 2008). Our application uses

URLs as a starting point, and it is our responsibility to fetch

lexical and host-based features in real-time to construct the

data set on an ongoing basis. By contrast, the webspam

set is a static representation of Web pages (using strings),

not URLs, and provides no notion of the passage of time.

Finally, our live feed provides a real-time snapshot of ma-

licious URLs that reflect the evolving strategies of Internet

criminals. The freshness of this data suggests that good

classification results over the set will be a strong indicator

of future success in real-world deployments.

5. Evaluation

In this section, we evaluate the effectiveness of online

learning over the live URL feed. To demonstrate this ef-

fectiveness, we address the following questions: Do on-

line algorithms provide any benefit over batch algorithms?

Which online algorithms are most appropriate for our ap-

plication? And is there a particular training regimen that

fully realizes the potential of these online classifiers?

By “training regimen”, we refer to (1) when the classifier

is allowed to retrain itself after attempting to predict the

label of an incoming URL, and (2) how many features the

classifier uses during training.

For (1), we compare “continuous” vs. “interval-based”

training. Under the “continuous” training regimen, the

classifier may retrain its model after each incoming ex-

ample (the typical operating mode of online algorithms).

In the “interval-based” training regimen, the classifier may

only retrain after a specified time interval has passed. In

our experiments, we set the interval to be one day. Batch

algorithms are restricted to interval-based training, since

continuous retraining would be computationally impracti-

cal. Unless otherwise specified, we use continuous retrain-

ing for all experiments with online algorithms (and then

evaluate the benefit of doing so in Section 5.3).

For (2), we compare training using a “variable” vs. “fixed”

number of features. Under the fixed-feature regimen, we

train using a pre-determined set of features for all evalu-

ation days. For example, if we fix the features to those

encountered up to Day 1, then we use those 150,000 fea-

tures for the whole experiment (see Figure 1). Under the

variable-feature regimen, we allow the dimensionality of

our models to grow with the number of new features en-

countered; on Day 8, for instance, we classify with up

to 500,000 features. Implicitly, examples that were intro-

duced before a feature i was first encountered will have

value 0 for feature i. Unless otherwise specified, we use

the variable-feature training regimen for all algorithms (and

then evaluate the benefit of doing so in Section 5.3).

As for the sizes of the training sets, online algorithms im-

plicitly train on a cumulative data set, since they can incre-

mentally update models from the previous day. For batch

algorithms, we vary the training set size to include day-long

and multi-day sets (details in Section 5.1).

5.1. Advantages of Online Learning

We start by evaluating the benefit of using online over batch

algorithms for our application in terms of classification

accuracy — in particular, whether the benefit of efficient

computation in online learning comes at the expense of ac-

curacy. Specifically, we compare the online Confidence-

Weighted (CW) algorithm against four different training

set configurations of a support vector machine. We use

the LIBLINEAR implementation of an SVM with a linear-

kernel as our canonical batch algorithm (Fan et al., 2008).

Evaluations with other batch algorithms such as logistic re-

gression yielded similar results.

Figure 3 shows the classification rates for CW and for SVM

using four types of training sets. We tuned all classifier

parameters over one day of holdout data, setting C = 100
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Figure 3. Cumulative error rates for CW and for batch algorithms

under different training sets. Note the y-axis starts at 1%.

for SVM, and η = 0.90 for CW. The x-axis shows the

number of days in the experiment, and the y-axis shows

the cumulative error rate: the percentage of misclassified

examples for all URLs encountered up to that date.

The SVM-once curve represents training once on Day 0’s

data and using that model for testing on all other days. The

cumulative error steadily worsens to 3.5%, and the per-day

false negative rate gets as high as 10–15%. These high er-

ror rates suggests that, to achieve better accuracy, the model

must train on fresh data to account for new features of ma-

licious and benign URLs encountered over time.

SVM-daily retrains only on data collected the previous day

— e.g., Day 6 results reflect training on the URLs collected

on Day 5, and testing on Day 6 URLs. The only exception

is that we do not retrain during the feed outages on Days

35–40. As a result, the cumulative error is just under 3%,

most of which is due to high per-day false negatives (5–

15% on some days), whereas per-day false positives are

around 1.5%. Although fresh data eventually helps SVM-

daily improve over SVM-once, one day’s training data is

still insufficient.

We use multi-day training sets to address this issue by train-

ing on as much data as our evaluation machine with 4 GB

RAM can handle (which is 14–17 days worth, or 280,000–

340,000 examples). SVM-multi-once is the multi-day ana-

logue to SVM-once. Here, SVM-multi-once trains on data

from Days 0 to 16, and from Day 17 on it uses that fixed

model for testing on subsequent days. The improvement

over SVM-once shows the benefit of more training data, but

the steadily worsening error again demonstrates the nonsta-

tionarity of the URL data set.

SVM-multi is the multi-day analogue of SVM-daily. Here,

SVM-multi trains on the previous 14–17 days worth of data

(depending on what can fit in memory). The resulting cu-

mulative error reaches 1.8%. SVM-multi’s improvement

over SVM-multi-once suggests the URL feature distribu-

tion evolves over time, thus requiring us to use as much

fresh data as possible to succeed. Overall, these results sug-

gest that more training data yields better accuracy. How-

ever, this accuracy is fundamentally limited by the amount

of computing resources available.

Fortunately, online algorithms do not have that limitation.

Moreover, they have the added benefit that they can incre-

mentally adapt to new data. As we see in Figure 3, the

accuracy for CW beats SVM-multi. Since the online algo-

rithm is making a single pass over a cumulative training set,

it does not incur the overhead of loading the entire data set

in memory. Because its training is incremental, it is capa-

ble of adapting to new examples in real time, whereas batch

algorithms are restricted to retraining at the next available

interval (more on interval-based training in Section 5.3).

These advantages allow the online classifier to have the best

accuracy in our experiments.

5.2. Comparison of Online Algorithms

Given the demonstrated benefits of online learning over

batch learning, we next evaluate which of the online al-

gorithms from Section 3 are best suited to malicious URL

detection. The main issue that these experiments address is

whether recent developments in online algorithms, which

include optimizing different objective functions, adjusting

for classification confidence, and treating features differ-

ently, can benefit the classifiers in our application.

Figure 4(a) shows the cumulative error rates for the online

algorithms. All algorithms in this experiment adopt the

continuous training regimen. We also note that the error

rates improve steadily over time for all classifiers, reaffirm-

ing that training on cumulative data is beneficial.

The Perceptron is the simplest of the algorithms, but it also

has the highest error rates across all of the days at around 2–

3%. This result suggests that because the Perceptron treats

mistakes equally (and ignores all correct classifications), its

updates are too coarse to accurately keep up with new ex-

amples. There needs to be a more fine-grain distinction be-

tween misclassified and correctly-classified examples with

respect to their impact on model updates.

Both logistic regression with stochastic gradient de-

scent (LRsgd) and the Passive-Aggressive (PA) algorithm

achieve a cumulative error approaching 1.6%, improving

over the Perceptron results. (Here we tuned the LRsgd

learning rate to γ = 0.01 over one day of holdout data.)

Presumably, this improvement occurs because LRsgd and

PA account for classification confidence. Specifically,

LRsgd updates are proportional to ∆t, and PA updates

are proportional to the normalized classification margin αt.

These results are comparable to SVM-multi.

The CW results suggest that the final leap comes from

treating features differently—both in terms of how they af-

fect classification confidence, and how quickly they should

be updated. With an error approaching 1%, CW clearly

outperforms the other algorithms. Most of the gap between

CW and the other online methods comes from CW’s lower
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(a) Error rates for online algorithms. All
use continuous/variable-feature training.
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(b) Benefits of using continuous training
over interval-based training.
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(c) Benefits of using variable-feature sets
over fixed-feature sets.

Figure 4. Comparing the effectiveness of various online algorithms, their use of continuous vs. interval training, and their use of fixed

vs. variable feature sets.

false negatives — CW has 1–2% false negatives per day,

whereas others have 2–4%. We hypothesize the gap oc-

curs because CW can update select portions of its model

very aggressively to account for new malicious features, all

without perturbing more established features.

Overall, we find that the more recent online algorithms out-

perform the simpler ones. Because the live combined URL

feed contains a dynamic mix of new and recurring fea-

tures, CW’s per-feature confidence weighting can exploit

that structure to achieve the best accuracy.

5.3. Training Regimen

In this section, we show that there is a significant advan-

tage to continuous training vs. interval-based training. We

also demonstrate that there is significant benefit to adding

newly-encountered features as opposed to using a fixed fea-

ture set. The aforementioned training regimens can help

online algorithms stay abreast of changing trends in URL

features. Thus, choosing the right training regimen can be

just as important as choosing the right algorithm.

Figure 4(b) shows the value of using continuous training

over interval training with the CW and Perceptron algo-

rithms. The higher error rates for interval training show that

there is enough variation between days that a model can

become stale if it is not retrained soon enough. In particu-

lar, the higher number of false negatives for interval-trained

CW is responsible for the persistent gap with continuously-

trained CW. Notwithstanding the aforementioned feed out-

ages on Days 35–40, the 1% error difference between con-

tinuous and interval-based Perceptron is due to spikes in

the false positive/negative rates for the interval-trained Per-

ceptron. Thus, continuous retraining yields as much im-

provement for the simpler Perceptron as it does for CW.

In addition to continuous retraining, accounting for new

features is critical to an algorithm’s success. Figure 4(c)

shows the value of using variable-feature training over

fixed-feature training. In this graph, “fixed features” means

that we restrict the model to using the features encountered

on Day 1 only (150,000 features total). We see that the

performance for fixed-feature CW degrades to a point that

it is no better than a Perceptron. Interestingly, variable-

feature Perceptron only achieves a marginal improvement

over fixed-feature Perceptron. One explanation is that, even

though variable-feature Perceptron can occasionally bene-

fit from adding new features, it does not update the new

feature weights aggressively enough to correct for future

errors. By contrast, the CW algorithm updates new fea-

tures aggressively by design, and hence can reap the full

benefits of variable-feature training.

Overall, continuous retraining with a variable feature set

allows a model to successfully adapt to new data and new

features on a sub-day granularity. And this adaptiveness is

critical to the full benefits of online algorithms.

6. Conclusion

Malicious Web sites are a prominent and undesirable In-

ternet scourge. To protect end users from visiting those

sites, the identification of suspicious URLs using lexical

and host-based features is an important part of a suite of de-

fenses. However, URL classification is a challenging task

because new features are introduced daily — as such, the

distribution of features that characterize malicious URLs

evolves continually. With an eye toward ultimately con-

structing a real-time malicious URL detection system, we

evaluated batch and online learning algorithms for our ap-

plication to study their benefits and tradeoffs.

Experiments over a live URL feed revealed the limitations

of batch algorithms in this setting, where we were forced to

make a tradeoff between accuracy and coping with resource

limitations (e.g., running out of memory). We demon-

strated that recently-developed online algorithms such as

CW can be highly accurate classifiers, capable of achiev-

ing classification accuracies up to 99%. Furthermore, we

showed that retraining algorithms continuously with new

features is crucial for adapting successfully to the ever-

evolving stream of URLs and their features.
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