Announcements

- Programming Assignment 0: Python Tutorial
 - Due tomorrow at 11pm
- Assignment 1: Search
 - Will be posted on Friday
- Office Hours
 - Mon 1-3pm, Tues 1-2pm, Wed 11am-noon

Today’s Lecture

- Finish Uninformed search
 - Breadth-first
 - Depth-first and variants
 - Uniform-cost search ◁ New
- Informed (Heuristic) search
 - Greedy best-first

Evaluating Search Strategies

- Completeness
 - Is the strategy guaranteed to find a solution when there is one?
- Optimality
 - Does the strategy find the highest-quality solution when there are several solutions?
- Time Complexity
 - How long does it take (in the worst case) to find a solution?
- Space Complexity
 - How much memory is required (in the worst case)?

Evaluating BFS

- Complete?
 - Yes (if the number of possible actions is finite)
- Optimal?
 - Not in general. When is it optimal?
 - When costs of all actions are the same
- Time Complexity?
 - How do we measure it?
- Space Complexity?

Time and Space Complexity

Let
- $b =$ branching factor (i.e., max number of successors)
- $m =$ maximum depth of the search tree
- $d =$ depth of shallowest solution

For BFS

Time: $O(b^d)$ If we check for goal as we generate a node! Not if we check as we get ready to expand!

Space: $O(b^d)$
Evaluating DFS

• Complete?
 – Not in general
 – Yes if state space is finite and we modify tree search to account for loops
• Optimal?
 – No
• Time Complexity?
 – $O(b^m)$
• Space Complexity?
 – $O(mb)$

Depth-Limited DFS?

Let l be the depth limit

• Complete?
 – No
• Optimal?
 – No
• Time Complexity?
 – $O(b^l)$
• Space Complexity?
 – $O(b^l)$

Iterative Deepening?

• Complete?
 – Yes (if b is finite)
• Optimal?
 – Yes (if costs of all actions are the same)
• Time Complexity?
 – $O(bd)$
• Space Complexity?
 – $O(bd)$

Costs on Actions

Cost of moving a truck = 2x the cost of moving a car that isn’t a sports car.
Cost of moving a sports car is 4x the cost of moving any other vehicle.

Uniform Cost Search

Fringe is a Priority Queue
Priority = cost so far