Deep Learning

Andrea Danyluk
April 21, 2017

Announcements

• Reading assignment (and paper response) for Monday: “Do Convolutional Nets Need to Be Deep and Convolutional?”

Today’s Lecture

• Deep Learning

What is Deep Learning?

• Represents the world as a nested hierarchy of concepts
 — Each concept defined in relation to simpler concepts
 — More abstract representations computed in terms of less abstract ones
• An artificial neural network with many layers
• Success generally not due to simply to the fact that they have many layers
 — Autoencoding
 — Convolution
 — Recurrence

Long History

• Foundational work done in the 1900s
 — 1980s-mid 1990s: Connectionism [Rumelhart 1986]
 — 1990s: modern convolutional networks [LeCun et al. 1998], LSTM [Hochreiter & Schmidhuber 1997, MNIST and other large datasets]
• Recent success due to
 — Availability of data
 — Availability of computing power
 — Continued work on algorithms and theory in this area
Architectural Choices

As with artificial neural networks generally:
- Number of layers
- Number and type of hidden and output units
- Connectivity

Convolutional Networks

- For data that has a known grid-like topology
 - Time series data (a 1-D grid taking samples at regular intervals)
 - Image data (2-D grid of pixels)
- Use convolution in place of general matrix multiplication* in at least one of their layers
- Most convolutional networks also make use of pooling

Convolution in Convolutional Net Terminology

- First argument is the input – for example, a segment of a 2-D image
- Second argument is the kernel – for example, a 2-D matrix
 - The entries in the matrix are parameters adapted by the learning algorithm
- Output is sometimes referred to as the feature map

Benefits of Convolution

Convolution leverages three ideas that can help a learning system:
- Sparse interactions
 - Accomplished by making the kernel smaller than the input
- Parameter sharing
 - Rather than learning a separate set of parameters for every location, we learn only one set
- Equivariant representations
 - Parameter sharing causes the network layer to be equivariant to translation

Pooling

A typical convolutional net layer consists of three stages
- Perform several convolutions in parallel to produce a set of linear activations
- Run each linear activation through a nonlinear activation function
- Apply a pooling function
 - Replaces the output at a location with a summary statistic of the nearby outputs
 - Helps to make the representation approximately invariant to small translations of the input
How Pooling Helps with Translation

A Full Convolutional Layer

A Convolutional Network

Questions

- What is the smallest size kernel that could reasonably serve as an edge detector?
- How are the kernel parameters learned?

Recurrent Networks

- Specialized for processing sequences of values \(\mathbf{x}^1, \mathbf{x}^2, \mathbf{x}^3, \ldots, \mathbf{x}^d \)
- Use hidden layer in the network to capture state history.
- Cycles in the graph allow the present value of a variable to influence its value at a future time step.

Recurrent Networks

- Specialized for processing sequences of values \(\mathbf{x}^1, \mathbf{x}^2, \mathbf{x}^3, \ldots, \mathbf{x}^d \)
- We refer to recurrent networks as operating on sequences of such vectors.
- Actually, usually operate on minibatches of such sequences, with a different sequence length \(d \) for each sequence in the minibatch.
- Add a special “end of sequence” symbol, to the end of each sequence.
Shared Parameters

- Relies on the assumption that the same parameters can be used for different time steps.
- Assumes the conditional probability distribution over the variables at time t+1 given the variables at time t is stationary.

The Challenge of Long-Term Dependencies

- Gradients propagated over many stages tend to either vanish (most of the time) or explode (rarely, but with much damage).
- Exponentially smaller weights given to long-term interactions.
- Solutions include:
 - Gradient clipping.
 - Use ReLU (rectified linear unit) rather than sigmoid or tanh.
 - Long Short Term Memory (LSTM): weight self-loops, conditioned on the context.