Classifier Learning: Induction of Decision Trees

Andrea Danyluk
April 10, 2017

Announcements
• Programming Assignment 4: Filtering
 – Due tomorrow.
 – Will send out the link for code review sign-up. If you haven’t done two code reviews, please sign up.
• Final project
 – Discuss ideas with me this week.
 – Will post the full schedule/deliverables on Wednesday.

Today’s Lecture
• Classifier learning: decision trees
• Note that the original syllabus said neural nets first. Switching the order.

Machine Learning includes...
• Learning how to do something
• Learning how to do something better
• Learning new facts
• ...

Supervised Classifier Learning
• In the category of “learning new facts”
• Inductive
 – Algorithm induces a general rule (or set of general rules) from a set of observed instances
 – No explicit background knowledge about the domain of application
• Supervised
 – Given a set of training examples \((x, y)\), where \(x\) is a feature vector describing an example and \(y\) is its class

Inductive = Knowledge-free?
• A possible claim: inductive classifier learners make no use of explicit background knowledge about the domain

• Not exactly: the attributes describing the examples are provided
 – Feature engineering is non-trivial
Inductive Bias

- The learned representation is set by the algorithm
- How the training examples are used is determined by the algorithm
- Many other ways in which the learning is influenced
- Any preference for one hypothesis over another, beyond mere consistency with the examples, is called a bias

Send patient home from hospital post-op?

<table>
<thead>
<tr>
<th>Major Operation?</th>
<th>Family at Home?</th>
<th>Old?</th>
<th>Send Home?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Learn a classifier that, given a new patient, will determine whether the patient should be sent home or not.

Decision tree for “Send patient home post-op?”

- **Major Operation?**
 - Yes
 - No
- **Family at Home?**
 - Yes
 - No
- **Patient Old?**
 - Yes
 - No

TIDIT:

Top down induction of decision trees

If all examples are from the same class
- The tree is a leaf with that class name
Else
- Pick an attribute for the decision node
- Construct one edge for each possible value of that attribute
- Partition examples by attribute value
- Build subtrees recursively

Note that this is a greedy algorithm

Selecting attributes on which to split

<table>
<thead>
<tr>
<th>Major Operation?</th>
<th>Family at Home?</th>
<th>Old?</th>
<th>Send Home?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Which is better?

Characteristics of Attribute Tests

- Let Y be the set of examples of class “Yes, send home”
- Let N be the set of examples of class “No”
- Say that $|Y| = 10$, $|N| = 10$
- Say that all of our attributes are Boolean.
- A test at any non-leaf node splits the data into two subsets, T_1 and T_2
 - The **best test** is one that produces $T_1 = Y$, $T_2 = N$.
 - The **worst test** is one such that T_1 contains an equal share of Y and N and T_2 does as well.
Entropy
A measure of the disorder/impurity of a set of examples.

• Let \(T \) be our set of training examples.
• Let \(C_1, C_2, \ldots, C_n \) be the class labels assigned to examples in \(T \).
• Let \(\text{freq}(C_i, T) \) be the number of examples in the training set that belong to class \(C_i \).
• Let \(|T| \) be the number of examples in the training set.

\[
\text{Entropy}(T) = -\sum_{i} \left(\frac{\text{freq}(C_i, T)}{|T|} \right) \log_2 \left(\frac{\text{freq}(C_i, T)}{|T|} \right)
\]

Just one way to think about the entropy measure
• Say I have a bag of 100 marbles.
 – 99 are blue
 – 1 is red
• If I pull out a marble and announce that it’s blue, that’s not very informative.
 \(-\log_2 \left(\frac{\text{freq}(C_i, T)}{|T|} \right) \) bits
High probability corresponds to low information
• If I pull out a marble and announce that it’s red, that’s much more interesting, but it will only happen 1/100 of the time.

Information Gain
• Select the test that decreases entropy most.
• Let \(X \) be an attribute.
 – Say that \(X \) is discrete-valued and has \(n \) possible values.
 – If \(X \) were selected as a test, we would create a decision node with \(n \) branches.
• Let \(j \) be a possible value of \(X \). Let \(T_j \) be the examples that have value \(j \) for attribute \(X \).
• We can compute the average entropy that results from making this split:

\[
\text{Entropy}_X(T) = \sum_j \left(\frac{|T_j|}{|T|} \right) \cdot \text{Entropy}(T_j)
\]

\[
\text{Gain}(T, X) = \text{Entropy}(T) - \text{Entropy}_X(T)
\]

Choose the attribute with the greatest gain.

Building the hospital-release tree

Major Operation?	**Family at Home?**	**Old?**	**Send Home?**
Yes | No | Yes | No
Yes | No | No | No
No | Yes | Yes | No
No | No | Yes | Yes

\begin{align*}
\text{Entropy} &= -\left(\frac{3}{5} \log_2 \frac{3}{5} + \frac{2}{5} \log_2 \frac{2}{5} \right) \\
&= 0.6 \times 0.74 + 0.4 \times 1.32 \\
&= 0.972
\end{align*}

\[\text{Entropy}_{\text{Major Operation}} = 0\]

\[\text{Entropy}_{\text{Major Operation}} = 0.942\]

\[
\text{Gain} = 0.432
\]
Decision tree for “Send patient home post-op?”

Major Operation?

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Family at Home?</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Old?</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Send Home?</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Entropy = .972

Entropy_FamilyAtHome

FamilyAtHome=Yes: Entropy = 0

FamilyAtHome=No: -(1/4 \log_2 1/4 + 3/4 \log_2 3/4) = .81

Entropy_Old

Old=Yes: Entropy = -(1/3 \log_2 1/3 + 2/3 \log_2 2/3) =.9042

Old=No: -(1/2 \log_2 1/2 + 1/2 \log_2 1/2) = 1

Entropy = .972

Entropy_Old

\[\text{Old}=\text{Yes}: \quad \text{Entropy} = 0.9042 \]

\[\text{Old}=\text{No}: \quad -\left(\frac{1}{3} \log_2 \frac{1}{3} + \frac{2}{3} \log_2 \frac{2}{3}\right) = 1\]

\[\text{Gain} = .324\]

Entropy = .972

Entropy_FamilyAtHome

\[\text{FamilyAtHome}=\text{Yes}: \quad \text{Entropy} = 0\]

\[\text{FamilyAtHome}=\text{No}: \quad -\left(\frac{1}{4} \log_2 \frac{1}{4} + \frac{3}{4} \log_2 \frac{3}{4}\right) = .81\]

\[\text{Gain} = .324\]
Decision Trees on Real Problems

- How do we assess a decision tree’s performance?
- How do we handle attributes with numeric values?
- Missing attribute values?
- How do we handle noise?
- Bias in attribute selection?

Assessing Performance

- Performance task is to predict the classes of unseen examples.
- Assessing the quality of the decision tree involves checking its classifications of labeled test examples.
- Requires that we leave some of our data out of the training set, so that we can test with it.