Reinforcement Learning: Temporal Difference

Andrea Danyluk
March 1, 2017

Announcements

• Programming Assignment 2 due tomorrow at 11pm
 – If working with a partner, send me email with your names and indicate who is turning it in
 – On Friday will make code review sign-up sheet available
• Assignment for Monday
 – Read Holte et al.’s AAAI 2016 paper on bi-directional search
 – Turn in brief reading response (no more than one page, 12pt font, 1.5 spacing) at start of class
• Sample midterm available online
• RL assignment will be available Friday morning
 – Will ask you to confirm partners with me by Monday

Today’s Lecture

• Reinforcement Learning
• But a note on Policy Iteration first

Reinforcement Learning

• Assume an MDP
 – S: a set of states
 – A: a set of actions
 – P(s’ | s, a): the probability of ending up in state s’, given that the agent is in state s and takes action a
 – R(s): or R(s, a, s’): a reward function
 – Want to find a policy π
• But this time we don’t know P or R
 – Need to try things out in order to learn

Passive RL

• Given:
 – A policy π(s) (can begin with a random policy)
 – No knowledge of P(s’ | s, a)
 – No knowledge of rewards R(s, a, s’)
• Goal: learn state values (or state,action values)
 – But can learn policy with exploring starts and generalized policy iteration
• Passive in the sense that there’s no choice about what actions to take
 – Need to execute the policy to learn from experience
 – Not offline planning. Actually take actions to learn.

Example: Direct Estimation

Episodes:

V(s) = E [Σ γt R(st+1)], t from 0 to ∞

s = S0

V(2, 3) = (96 - 103) / 2 = -3.5
V(3, 3) = (99 + 97 - 102) / 3 = 31.3
Example: Direct Estimation

\[V(s) = E[\sum_{t=0}^{\infty} \gamma^t R(S_{t+1})], \]

where \(s = S_0 \)

Every-visit Monte Carlo method for estimating \(V^\pi \)

Can also have first-visit MC method to do the same.

Note that all learning happens at the end of an episode.

Example: Model-Based Learning

Episodes:

\[
\begin{align*}
(1, 1) & \rightarrow -1, (1, 2) \rightarrow -1, (1, 2) \rightarrow -1, (1, 3) \rightarrow -1, (1, 3) \rightarrow -1, (1, 4) \rightarrow -100 \\
(1, 1) & \rightarrow -1, (1, 2) \rightarrow -1, (1, 3) \rightarrow -1, (1, 3) \rightarrow -1, (1, 4) \rightarrow -100
\end{align*}
\]

\[
\begin{align*}
P(1, 2) | (1, 1), \text{North} & = 1 \\
P(4, 3) | (3, 3), \text{Right} & = 1/3 \\
P(3, 2) | (3, 3), \text{Right} & = 2/3
\end{align*}
\]

Model-Based Learning

- Count outcomes for each \(s, a \)
- Normalize to give estimate of \(P(s' | s, a) \)
- Discover \(R(s) \) or \(R(s, a, s') \) when exploring
- Solve the MDP with the learned model as if it were correct
 - Use Policy Iteration, for example

Model-Based vs Model-Free Learning

- Want to compute an expectation weighted by \(P(x) \):
 \[E[f(x)] = \sum x P(x), \text{i.e.,} \]
 \[V^\pi(s) = \sum_{x} P(x) [R(s, a, s') + \gamma V^\pi(s')] \]
- Model-Based: estimate \(P(x) \) from samples, and then compute expectation
 \[P(x) = \text{num}(a)/N, \text{i.e.,} \]
 \[V^\pi(s) = \frac{1}{N} \sum_{x} \text{num}(a,x) \cdot [R(s, a, s') + \gamma V^\pi(s')] \]
- Model-Free: estimate expectation directly from samples
 \[E[f(x)] = 1/N \sum f(x), \text{i.e.,} \]
 \[V^\pi(s) = \frac{1}{N} \sum_{x} \text{num}(a,x) \cdot [R(s, a, s') + \gamma V^\pi(s')] \]
- That is, the samples appear with the right frequencies.

Temporal Difference Learning

- Learn from every experience: don’t have to wait for an episode to end
 - Update \(V(s) \) each time we experience \((s, a, s', r') \)
 - Likely \(s' \) will contribute updates more often
- Policy is still fixed
- Moves a state’s value toward the value of whatever successor occurs: running average

\[V^\pi(s) = V^\pi(s) + \alpha \text{sample} - V^\pi(s) \]

Note: \(V \) on right hand side is old value. \(V \) on left hand side is new. (Like an assignment statement.)

- Get sample of \(V(s) \):
 \[\text{sample} = R(s, n(s), s') + \gamma V^\pi(s') \]
- Update \(V(s) \):
 \[V^\pi(s) = (1-\alpha) V^\pi(s) + \alpha \text{sample} \]
Exponential Moving Average

- $V^\pi(s) = (1-\alpha) V^\pi(s) + \alpha \text{(sample)}$
- Let
 - $V_k^\pi(s)$ be the kth estimate of $V^\pi(s)$
 - $V_k(s)$ be the kth sample
- Then
 - $V_k^\pi(s) = \alpha (V_k^\pi(s)) + (1-\alpha) V_{k-1}^\pi(s)$
 - $= \alpha (V_k^\pi(s)) + (1-\alpha) [\alpha (V_{k-1}^\pi(s)) + (1-\alpha) V_{k-2}^\pi(s)]$
 - $= ...$
- Since $\alpha < 1$, older estimates get less and less weight as time goes on
- α is called the learning rate