Lecture 5

Homework #5: 1.7.4a, 1.7.4b, 1.7.5b,c, 1.7.6, 1.8.2a-d, 1.8.3a,b, 1.8.5

Recall from last time that:
the set of all strings over an alphabet Σ is denoted Σ^*.

A language is a set of strings over an alphabet.
 ex. Σ^*, \emptyset, Σ are languages

languages are sets - and can be manipulated/combined in the usual (and not quite so usual) ways:

1) $L_1 \cup L_2$

2) \overline{A} = the complement of $A = \Sigma^* - A$.

3) L_1L_2 = the concatenation of languages. \{xy : x \in L_1 and y \in L_2\}
L^* = Kleene star (e is always in L^*)
$L^+ = LL^*$ = closure of a language L under concatenation

Q: Is there a good/clear way to represent these possibly infinite languages?

Can certainly use the set notation just discussed:

Example.
\{
 a,b\}^*a\{a\}b+\{a\}\{a,b\}\{a\}\{b\}^*

is there a simpler way of stating this?
(a \cup b)*ab+a(a \cup b)ab*

This is an example of a regular expression

(with which you’re probably familiar if you’ve ever used grep, awk, perl, etc.)

Def. Let Σ be an alphabet. The regular expressions over Σ and the sets they denote are defined by the following:
1) \(\emptyset \) is a reg expr and denotes the empty set.

2) \(e \) is a reg expr and denotes the set \(\{e\} \)

3) for \(a \in \Sigma \), \(a \) is a reg expr and denotes \(\{a\} \)

4) if \(r \) and \(s \) are reg expr denoting the sets \(R \) and \(S \), then \((r \cup s), (rs), \) and \((r^*) \) denote \(R \cup S, R^S, R^* \).

NOTE that the above def is not exactly the definition that's in the text.

Now let's do the reverse: let's find the language (i.e., the set) that is represented by a regular expression.

if \(r \) is a reg expr, \(L(r) \) is the lang denoted by \(r \).

ex. \((((a^*a)b) \cup b) = L((a^*a)b) \cup L(b) = L(a^*a)L(b) \cup L(b) = L(a^*)L(a)L(b) \cup L(b) = L(a)^*L(a)L(b) \cup L(b) = \{a\}^*\{a\}\{b\} \cup \{b\} \)

A language is a **regular language** iff it can be expressed by a regular expression.

Let’s now do some class exercises to be sure that everyone is comfortable with regular expressions and the languages they express:

I. Let \(\Sigma = \{0, 1\} \). Give the regular expression for each of the following.

\{w | w has exactly a single 1\}
\{w | w has at least one 1\}
\{w | w contains 001 as a substring\}
\{w | w is a string of even length\}
\{w | the length of w is a multiple of 3\}
\{01, 10\}

II. What is the language described by each of the following regular expressions?
(0 ∪ e)1*
∅*
1*∅
(0 ∪ 1)*00(0 ∪ 1)*
(1 ∪ 10)*

III. Give a regular expression for the set of positive odd integers represented in binary. Then give one for the set of positive odd integers represented in decimal.