Lecture 28

Homework #28: 4.5.1 a, 4.5.1 b, 4.5.2, 4.5.3

Nondeterministic Turing Machines: provide a choice of actions for certain combinations of state and symbol.

Def. A *nondeterministic* TM is a quintuple \((K, \Sigma, \Delta, s, H)\), where

- \(K\), \(\Sigma\), \(s\), and \(H\) are defined as they are for the standard TM and
- \(\Delta\) is a finite subset of \(((K-H) \times \Sigma) \times (K \times (\Sigma-\{>\} \cup \{\leftarrow,\rightarrow\}))\)

For the moment, let’s view NTMs *only as acceptors*, not as deciders or computers.

We'll see that they add nothing over standard deterministic TMs.

Def. A string \(w\) is *accepted* by a NTM M if some computation of M on \(w\) halts.

Ex. \(L = \{w : w\ has\ a\ substring\ with\ >\ 1\ occurrence\ in\ w\}\)

- step 1. guess the substring
- step 2. scan \(w\) for a copy of the substring
- step 3. halt only if you find a match

Ex. \(L = \) all numbers that have an integer positive square root

- guess the int pos sq rt; square it and check against input
Ex. \(L = \) all 2nd degree polynomials that have roots > 0

i.e., polynomials \(ax^2 + bx + c \) such that
\(ax^2 + bx + c = 0 \) has positive valued solutions.

input:

| # | a | $ | b | $ | c | # |

$ is used rather than # for reasons that will be clear soon.

step 1. guess 2 solutions
step 2. compute the function on both guessed solns
step 3. compare the 2 computations to 0

halt iff the 2 solutions are 0.

Lemma. For every NTM \(M_1 \), we can construct a standard TM \(M_2 \) such that for any string \(w \) not containing #

(a) if \(M_1 \) halts on input \(w \), then \(M_2 \) halts on input \(w \).
(b) if \(M_1 \) doesn't halt on input \(w \), then \(M_2 \) doesn't halt on input \(w \).

Proof.

We'll first construct a 3-tape deterministic TM (which we know can be simulated by a standard TM!)

We know that for any state and tape symbol of \(M_1 \), there is a finite number of choices for "next move." These can be numbered 1, 2, . . .

Let \(r \) be the maximum number of choices for any tape-symbol pair.
Then any finite sequence of choices can be represented by a sequence of the digits 1-\(r \). (Note that not all such sequences will represent valid choices of moves, since there may be fewer than \(r \) choices in some situations.)
M_2 will have 3 tapes:

1. will hold the input

2. on (2), M_2 will generate sequences of digits 1-r in a systematic manner

3. on (3), M_2 will simulate M_1 on the input, using the sequence of steps on tape (2)

 - if M_1 enters a halt state, then M_2 will eventually halt as well;
 - if no sequence of moves leads to a halt state in M_1, then M_2 will just continue to generate move sequences infinitely.

Theorem. Any language accepted by a NTM is accepted by a deterministic TM.

Now, what does all of this mean with respect to deciding and computing?

Def. Let M = (K, Σ, Δ, s, {y, n}) be a nondeterministic TM. We say that M decides a language L ⊆ (Σ - {>, #})^* if the following two conditions hold for all w ∈ (Σ - {>, #})^*:

a. There is a natural number N, depending on M and w, such that there is no configuration C satisfying (s, >#w) |——^N C.

b. w ∈ L iff (s, >#w) |——^* (y, uav) for some u, v ∈ Σ^*, a ∈ Σ.

The first of these conditions specifies that the TM always halts.

The second says that we say yes as long as one of the computations says yes.

We say that a NDTM M = (K, Σ, Δ, s, {h}) computes a function f: (Σ - {>, #})^* → (Σ - {>, #})^* if the following two conditions hold for all w ∈ (Σ - {>, #})^*:

a. There is an N, depending on M and w, such that there is no configuration C satisfying (s, >#w) |——^N C.

b. (s, >#w) |——^* (h, uav) iff ua = >#, and v = f(w).